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ABSTRACT 
This study investigates turbulent boundary layer flow under the 
influence of a constant pressure gradient and thermal radiation. 
The governing equations—continuity, momentum (a nonlinear 
differential equation), and energy—were solved using the He-
Laplace method, which combines the Homotopy Perturbation 
Method with the Laplace Transform Technique. This approach 
yielded the velocity and temperature profiles of the flow. The effects 
of various fluid parameters were examined: the magnetic 
parameter(𝑀), suction parameter (𝑆), and pressure gradient (𝛺) 

on velocity profiles; and the thermal radiation parameter (𝑁), 
Eckert number(𝐸𝑐), Prandtl number (𝑃𝑟), and suction parameter 

(𝑆) on temperature profiles. Corresponding graphs were plotted to 
illustrate these influences. The results indicate that an increase in 
the thermal radiation parameter raises the temperature field, while 
an increase in the magnetic parameter reduces the velocity field. A 
higher Prandtl number diminishes the temperature profile, and 
increasing the suction parameter reduces both velocity and 
temperature fields. Additionally, velocity increases with a greater 
pressure gradient, and a higher Eckert number enhances the 
temperature profile. These findings have practical implications in 
thermal processes across various engineering applications, such 
as in automotive systems, magnetohydrodynamic (MHD) power 
generators, and industrial operations like polymer extrusion and 
plastic film drainage. 
 
Keywords: Turbulent, Boundary layer, thermal radiation, Pressure 
gradient 
 
INTRODUCTION 
In Physics and fluid mechanics, the boundary layer is the thin layer 
of fluid in the immediate vicinity of a bounding surface formed by 
the fluid flowing along the surface. The fluid’s interaction with the 
wall induces a no-slip boundary condition (zero velocity at the wall). 
The flow velocity then monotonically increases above the surface 
until it returns to the bulk flow velocity. The thin layer consisting of 
fluid whose velocity has not yet returned to the bulk flow velocity is 
called the velocity boundary layer. 
The standard formulation of the boundary layer equations is used 
and analytically solved until the point of flow separation for the 
unsteady state one dimensional turbulent boundary layer flow of an 
incompressible fluid over a flat plate under radiation and pressure 
gradient effects. The non-dimensional form of the corresponding 
equations with pressure gradient and thermal radiation are 
obtained. The resulting non-dimensional equations form a 
nonlinear partial differential equations, accompanied by sufficient 
boundary conditions. Such kinds of systems have been studied in 

literature using mostly numerical methods, since finding an 
analytical solution is very difficult, if at all possible. However, 
instead of using numerical method in order to solve this system of 
PDE’s, one may choose a semi-analytical technique. The major 
advantage when using a semi-analytical technique instead of 
numerical is that a closed form approximate formula for the solution 
is obtained. This may lead to useful formula, even if they are 
approximation for quantities of physical interest. In addition, the 
implementation of semi-analytical techniques is highly facilitated 
nowadays by the used of symbolic computation software. 
Approximate methods have been successfully applied in the past 
in order to study fluid mechanics problems. The most well-known 
approximate methods are perturbation techniques Dyke (1975). 
For recent applications of perturbation techniques to fluid 
mechanics problems, one may refer to Housiadas & Tanner (2006), 
Housiadas et al., (2015). Other approximate techniques have also 
been applied in the study of various physical problems, including 
boundary layer flows. The references of the present research are 
confined to few indicative papers of the last decade. It is worth 
mentioning that the differential transform method, combined with 
the method of steps, has been successfully applied for solving 
PDE’s Rebenda & Samarda, 2015) as well as delayed DE’s and 
systems, Rebenda & Samarda (2019). 
A breakthrough for the approximate methods Liao’s homotopy 
analysis method, (HAM), which was introduced Liao (1992). Since 
then, it has been extensively used for a variety of physical 
problems, such as beam problems, oscillation problems, wave 
propagation problems and of course, fluid mechanics problems. A 
thorough description of HAM can be found in Liao (2004) & (2011), 
where it is also shown how other approximate methods can be 
unified by HAM. The first papers where HAM was used for the study 
of boundary layer problems were Liao (1997) & (1999), where the 
Blasius and Falkner Skan equations was solved. Ever since, HAM 
has been successfully used, literally in hundreds of papers, for the 
study of boundary layer flows. In vast majority of the papers 
regarding boundary flow where HAM was used, the nonlinear 
equations under consideration were homogeneous with boundary 
conditions at ∞. There are, however, also papers of this kind where 
the solved nonlinear equations are nonhomogeneous, but in most 
cases, the nonhomogeneous term is a constant. Even less are 
papers of this kind, where the boundary conditions are not placed 
at ∞ but at some finite point. 
 
Turbulent boundary layer is marked by mixing across several 
layers of it. The mixing is now on a macroscopic scale. Packets of 
fluid may be seen moving across. Thus, there is an exchange of 
mass, momentum and energy on a much bigger scale compared 
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to a laminar boundary layer. A turbulent boundary layer forms only 
at larger Reynolds number. The scale of mixing cannot be handled 
by molecular viscosity alone. Those calculating turbulent flow rely 
on what is called turbulence viscosity or Eddy viscosity, which has 
no exact expression. As a consequence of intense mixing a 
turbulent bound layer has a step gradient of velocity at the wall and 
therefore a large shear stress. In addition, heat transfer rates are 
also high. 
Thermal radiation has also significant effects on the fluid flow, 
especially at high temperature with important engineering 
applications. Free convective laminar flow in the presence of 
radiation has been studied by Reptis & Toki (2009). Thermal 
radiation of an optically tin gray fluid has been studied in several 
incompressible flow configurations Reptis & Perdikis (2003). Other 
have studied radiation effects on flow past a stretching plate with 
temperature dependent viscosity Xenos (2013). The interaction of 
thermal radiation on a vertical oscillating plate and the effect of 
radiation on a moving vertical plate have been studied by 
Muthucumaraswamy (2006). 
Although many studies exist on radiation effects on laminar 
incompressible flows, the study of MHD, compressible and 
turbulent boundary layer flow under the influence of thermal 
radiation and adverse pressure gradient has received little 
attention. The emission turbulence-radiation interaction in 
hypersonic boundary layer flow was studied by Duan et al., (2016). 
In this study, when emission is coupled to the flow, the temperature 
is drastically decreased in the turbulent layer. Liao (2004) used the 
basis ideas of the homotopy in topology to propose general 
analytical method of nonlinear problems. Namely, the so called 
Homotopy Analysis Method, (HAM) was proposed to obtain series 
solutions for nonlinear differential equations. Kafoussias & Xenos 
(2000) studied the effect of heat and mass transfer on the steady 
Reynolds averaged boundary layer equations and their boundary 
conditions were transformed in a suitable form for numerical 
solution by using the compressible version of the Falkner-Skan 
transformation. The resulting coupled and nonlinear system of 
partial differential equation was solved using the Keller’s box 
method and a modified version of it. 
The thermal radiation effects on unsteady free convective flow of a 
viscous incompressible flow past an infinite vertical oscillating plate 
with variable temperature and mass diffusion has been studied by 
Muthucumaraswamy (2006). The fluid considered here is a gray, 
absorbing-emitting radiation but a non-scattering medium. The 
plate temperature is raised linearly with respect to time and the 
concentration level near the plate is also raised linearly with respect 
to time. An exact solution to the dimensionless governing equations 
has been obtained by the Laplace transform method, when the 
plate is oscillating harmonically in its own plane. The effects of 
velocity, temperature and concentration are studied for different 
parameters like phase angle, radiation parameter, Schmidt 
number, thermal Grashof number, mass Grashof number and time 
are studied. It is observed that the velocity increases with 
decreasing phase angle. Mark et al., (2009) described the new 
high-resolution code for the direct simulation of incompressible 
boundary layers over a flat plate. The code can accommodate a 
wide range of pressure gradients, and general time dependent 
boundary conditions such as incoming wakes or wall forcing. The 
consistency orders of the advective and pressure-correction steps 
are different, but it is shown that the overall resolution is controlled 
by the higher-order advection steps. The formulation of boundary 
conditions to ensure global mass conservation in the presence of 

arbitrary forcing was carefully analyzed. Duan et al., (2011) 
conducted a direct numerical simulation to study the effects of 
emission turbulence-radiation interaction in hypersonic turbulent 
boundary layers, representative of the orion crew exploration 
vehicle at peak-heating condition during reentry. A non-
dimensional governing parameter to measure the significance of 
emission turbulence radiation interaction is proposed, and the 
direct numerical simulation fields with and without emission. Both 
the uncoupled and coupled results show that there is no sizable 
interaction between turbulence and emission at the hypersonic 
environment under investigation. Xenos (2017) investigated the 
effect of radiation on the flow over a stretching plate of an optically 
thin gray, viscous and incompressible fluid is studied. The fluid 
viscosity is assumed to vary as an inverse linear function of the 
temperature. The partial differential equations (PDEs) and their 
boundary conditions, describing the problem under consideration, 
are dimensionalized and the numerical solution is obtained by 
using the finite volume discretization methodology which is suitable 
for fluid mechanics applications. The numerical results for the 
velocity and temperature profiles are shown for different 
dimensionless parameters entering the problem under 
consideration, such as the temperature parameter, θr, the radiation 
parameter, S, and the Prandtl number, Pr. The numerical results 
indicate a strong influence of these parameters on the non-
dimensional velocity and temperature profiles in the boundary 
layer. Hughes & Brighton (1991) studied the steady, creeping and 
isothermal sedimentation of a rigid sphere in an incompressible 
viscoelastic fluid which follows the exponential Phan–Thien and 
Tanner constitutive equation is studied analytically. The solution of 
the governing equations is expanded as a regular perturbation 
series for small values of the Deborah number, and the resulting 
sequence of two-dimensional partial differential equations is solved 
analytically up to eighth order. Although the domain is unbounded, 
the solution is able to resolve features of the flow that cannot be 
revealed by a low-order theoretical analysis, such as very fine flow 
structures and a stress boundary layer close to the surface of the 
sphere. The calculation of the drag force exerted on the sphere by 
the fluid was done by developing two formulas. The first is based 
on the flow-field close to the sphere and the second is based on 
the far flow-field. Both formulas produce the same analytical 
expressions verifying the correctness and consistency of the series 
solution. At small Deborah numbers, a decrease of the drag force 
is predicted (i.e., an increase of the sedimentation velocity), 
followed by a significant drag enhancement at higher Deborah 
numbers. Investigation of the solution for the existence of a 
negative wake close to the rear stagnation point did not reveal such 
a phenomenon when physical constraints on the solutions were 
posed. On the contrary, a negative wake is predicted only as an 
artifact due to the loss of positive definiteness of the conformation 
tensor. It is also demonstrated that the effect of viscoelasticity is 
maximized in a region around the sphere with a radius which is 
about ten times the radius of the sphere. Last, it is shown that the 
fluid disturbances due to the viscoelasticity of the matrix fluid decay 
very slowly with the distance from the sphere, depending on the 
magnitude of the Deborah number. Streamlines, extra-stress and 
pressure contours as well as the extension of the polymer 
molecules are also presented and discussed. Nargund et al., 
(2017) investigated the compressible fluid flow in boundary layer 
region by Homotopy Analysis Method (HAM). Using Falkner-Skan 
Transformation, the governing partial differential equation were 
reduced into two nonlinear partial differential equations. These 
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equations were solved by Homotopy Analysis Method and the 
convergence of this, studied by using the Domb sykes plot. The 
effect of suction and injection were studied on the velocity and 
temperature distribution and were depicted in a graph. Xenos & 
Pop (2017) studied the combined effect of magnetic field thermal 
radiation and local suction on the steady turbulent compressible 
boundary layer flow with adverse pressure gradient numerically. 
The magnetic field was constant and applied transversely to the 
direction of the flow. The fluid was subjected to a localized suction 
and was considered as a radiative optically thin gray fluid. The 
Reynolds-averaged Boundary Layer equations with appropriate 
boundary conditions were transformed using the compressible 
Falkner-Skan transformation. Housiadas & Tanner (2018) studied 
the effect of steady shear flow on an infinitely long and freely 
rotating circular cylinder using asymptotic methods. The ambient 
fluid is assumed viscoelastic and modeled with the Oldroyd-B 
constitutive equation under isothermal and creeping flow 
conditions. The solution for all the dependent variables is expanded 
as an asymptotic power series with the small parameter being the 
Weissenberg number, Wi, which is defined as the product of the 
single relaxation time of the fluid times the externally imposed 
shear rate. The resulting sequence of equations is solved 
analytically up to the eighth order in the Weissenberg number, 
leading to a series solution, the accuracy and validity of which is 
shown to be linked to the loss of positive definiteness of the 
conformation tensor. The solution derived here is the first analytical 
result in the literature for viscoelastic fluids past a freely rotating 
cylinder. It reveals the slowdown of the rotation of the cylinder with 
respect to the Newtonian case, as previously found for the same 
type of flow past a rigid sphere. It is also seen that the first 
correction to the velocity profile is of second order in Wi, while that 
for the pressure is of first order. This contrasts with the solution for 
the viscoelastic flow past a sphere for which the correction for both 
the velocity and pressure profiles are of first order in Wi. The 
analytical solution also shows that the region of closed streamlines 
around the cylinder is enlarged compared to the Newtonian case. 
Last, it is seen that the up-and-down and fore-and-aft symmetries 
of the streamlines and the vorticity contours, observed for 
Newtonian fluids, break in the viscoelastic case. Rabenda & 
Smarda (2016), described propose a semi-analytical technique 
convenient for numerical approximation of solutions of the initial 
value problem for p-dimensional delayed and neutral differential 
systems with constant, proportional and time varying delays. The 
algorithm is based on combination of the method of steps and the 
differential transformation. Convergence analysis of the presented 
method is given as well. Applicability of the presented approach is 
demonstrated in two examples. A system of pantograph type 
differential equations and a system of neutral functional differential 
equations with three types of delays are considered. The accuracy 
of the results is compared to those obtained by the Laplace 
decomposition algorithm, the residual power series method and 
Matlab package DDENSD. A comparison of computing time is 
presented, too, showing reliability and efficiency of the proposed 
technique. Sharma et al., (2019) used on analytical technique 
known as homotopy analysis method to acquire solutions for 
magnetohydrodynamic 3-D motion of a viscous nanofluid over a 
saturated porous medium with a heat source and thermal radiation. 
The governing nonlinear partial differential equations are changed 
to ordinary differential equations, employing appropriate 
transformations. Validation of the present result is done with the 
help of error analysis for flow and temperature. The influences of 

pertinent parameters on momentum, energy and Nusselt number 
are studied and discussed. The major findings are velocity of the 
nanofluid is affected by the nano particles volume fraction and the 
thickness of the thermal boundary layer becomes thinner and 
thinner subject to sink, whereas the effect is revered in case of the 
source. 
In these studies, however, the fluid flows considered were 
compressible. But it is a known fact that most fluids used in 
Engineering and hydraulics are mainly incompressible. 
Years later, Xenos et al., (2020) studied the steady state, two 
dimensional, laminar, boundary layer flow of an incompressible 
fluid over a flat plate under radiation and pressure gradient effects, 
and solution was obtained using Homotopy Analysis Method; an 
analytical technique for the first time. 
Most existing studies focus on either turbulent boundary layers 
under zero or varying pressure gradients, or radiative heat transfer 
in laminar or simplified turbulent flows. However, this work fills the 
gap by investigating fully turbulent boundary layers under a 
constant pressure gradient with thermal radiation. Turbulent 
boundary layer flows are fundamental to many engineering 
systems, including aerospace, energy, and environmental 
applications. When these flows occur under a constant pressure 
gradient and are influenced by thermal radiation, the complexity 
increases significantly. Understanding this interaction is crucial for; 
improving thermal management in high-speed vehicles and 
reactors, Enhancing predictive models for heat transfer in 
turbulent regimes and Designing more efficient cooling systems 
in industrial processes. 
  
MATERIALS AND METHODS 
We consider an unsteady, one-dimensional turbulent flow of an 
incompressible fluid in the boundary layer that forms over a flat 
plate parallel to the free stream velocity, 𝑈∞is considered. In a 

Cartesian coordinate system (𝑥, 𝑦), the surface is located at 𝑦 =
0, 0 ≤  𝑥 ≤  𝐿, as shown in Figure 1 below.  
 

 
  Figure 1: Flow Configuration and Coordinate System 
 
The following assumptions have been made, 

• Unsteady state 

• One-dimensional flow 

• The suction is assumed 

• The plate is infinite and the fluid motion is unsteady, so 
all the flow variables depend on 𝑦 and 𝑡 only 

• The 𝑥-axis is normal to the plate in the direction of the 
flow 

• The 𝑦-axis is taken along the plate in the vertical 
direction 

 
The governing equations for the boundary layer simplifications 
consist of the continuity equation 
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𝜕𝑢

𝜕𝑦
= 0                                                                                        (1) 

The momentum equation, 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑣

𝜕𝑢

𝜕𝑦
)

= −
𝑑𝑝

𝑑𝑥
+ 𝜗

𝜕2𝑢

𝜕𝑦2 − 𝜎𝐵0
2𝑢

−
𝜇

𝑘
𝑢                                                                               (2) 

And the energy equation, 

𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑣

𝜕𝑢

𝜕𝑦
)

= 𝐾
𝜕2𝑇

𝜕𝑦2 + 𝜇 (
𝜕𝑢

𝜕𝑦
)

2

−
𝜕𝑞𝑟

𝜕𝑦
                                                                                   (3) 

The initial and boundary conditions are 

𝑢(𝑦, 𝑡) = 𝑢0𝑒−𝑦ℎ, 𝑇 = 𝑇0 + (𝑇𝑤 − 𝑇∞)𝑒−𝑦ℎ  at 𝑡 = 0, for 

0 ≤ 𝑦 ≥ ℎ 

𝑢(𝑦, 𝑡) = 𝑢0, 𝑇(𝑦, 𝑡) = 𝑇0 + (𝑇𝑤 − 𝑇∞) at 𝑦 = ℎ, for 𝑡 >
0                                                            (4) 

Where 𝑢 𝑎𝑛𝑑  𝑣 are the velocity components, 𝑇 is the 

temperature, 𝑝 is the pressure, 𝜌 is the density, 𝜗 is the kinematic 
viscosity, 𝜇 is the dynamic viscosity, 𝐶𝑝 is the specific temperature 

of the fluid under constant pressure, 𝑘 is the coefficient of thermal 

conductivity, 𝜎 is the Stefan Boltzmann constant, 
𝜕𝑞𝑟

𝜕𝑦
 is the local 

radiant absorption, 𝑇0 is the temperature of the fluid, 𝑇𝑤 is the 

temperature of the flat plate, 𝑇∞ is the ambient temperature at the 

boundary layer, and 𝛿 is the boundary layer thickness. 
Equations (1), (2), and (3) with the boundary conditions (4) will be 
solved using He-Laplace Techniques (Perturbation Method), to 
obtain velocity, pressure, and energy for the boundary layer flow, 
under consideration. 
To the non-dimensional equations (1) – (4), the following 
dimensionless parameters are introduced [29] 

𝑢∗ =
𝑢

𝑢0
, 𝑃∗ =

𝑝

𝜇𝑢0
2 ,

𝑡∗ =
𝑡𝑢0

2

𝜗
,    𝑀2 =

𝜎𝐵0
2𝜗

𝜌𝑢0
2 ,    𝑦∗

=
𝑦𝑣0

𝜗
,      

  𝑥∗ =
𝑥

𝑢0
,      𝑆 =

𝑣0

𝑢0
,      𝑣∗ =

𝑣

𝑢0
, 𝐷𝑎 =

𝑘𝑣0
2

𝜗2 ,       

𝜃 =
𝑇 − 𝑇0

𝑇𝑤 − 𝑇∞
,            𝑃𝑟 =

𝜌𝑣0
2

𝜗2 ,                         𝑁

=
4𝛼2

𝜌𝐶𝑝𝑣0
2,              

𝑝𝑟 =
𝜌𝐶𝑝

𝑘
,        

𝜕𝑞𝑟

𝜕𝑦
= 4𝛼2(𝑇0 − 𝑇),      𝐸𝑐 =

𝜗𝑈0
2

𝐶𝑝(𝑇𝑤−𝑇∞)
,        ℎ =

𝑢0

𝜗
                                                (5)

  
Substituting equation (5) into equations (1) – (4) and by dropping 
the asterisks, we have the following  

𝜕𝑢

𝜕𝑡
− 𝑠

𝜕𝑢

𝜕𝑦

= −
𝜕𝑝

𝜕𝑥
+

𝜕2𝑢

𝜕𝑦2

− (𝑀2

+
1

𝐷𝑎
) 𝑢                                                                                         (6) 

𝜕𝜃

𝜕𝑡
− 𝑠

𝜕𝜃

𝜕𝑦

=
1

𝑝𝑟

𝜕2𝜃

𝜕𝑦2
+ 𝐸𝑐 (

𝜕𝑢

𝜕𝑦
)

2

+ 𝑁𝜃                                                                                           (7) 
The Initial and Boundary Conditions: 
𝑢(𝑦, 𝑡) = 𝑒−𝑦 , 𝜃(𝑦, 𝑡) = 𝑒−𝑦 𝑎𝑡  𝑡 = 0  𝑓𝑜𝑟  0 ≤ 𝑦

≥ 1                                 
𝑢(𝑦, 𝑡) = 1, 𝜃(𝑦, 𝑡) = 1  𝑎𝑡  𝑦 = 1   𝑓𝑜𝑟  𝑡
> 0                                                                                (8) 
 
 
Solution of the Problem 
In this section, we employed the He – Laplace method to solve 
equations (6) and (7) subject to equation (8) 
Taking the Laplace transform of (6); gives 

ℒ {
𝜕𝑢

𝜕𝑡
} − ℒ {𝑠

𝜕𝑢

𝜕𝑡
}

= ℒ{Ω} + ℒ {
𝜕2𝑢

𝜕𝑦2
}

− ℒ{𝐿1𝑢}                                                                     (9) 

Where −
𝜕𝑝

𝜕𝑥
= Ω,    𝐿1 = (𝑀2 +

1

𝐷𝑎
)                                                                                              (10) 

But ℒ {
𝜕𝑢

𝜕𝑡
} = 𝑠ℒ{𝑢(𝑦, 𝑡)} − 𝑢(𝑦, 0) 

Thus, 𝑠ℒ{𝑢(𝑦, 𝑡)} − 𝑢(𝑦, 0) − ℒ {𝑠
𝜕𝑢

𝜕𝑡
} = ℒ{Ω} + ℒ {

𝜕2𝑢

𝜕𝑦2} −

ℒ{𝐿1𝑢}                                   (11) 
Applying the initial condition on eqn. (11), one obtains, 

𝑠ℒ{𝑢(𝑦, 𝑡)} − 𝑒−𝑦 − ℒ {𝑠
𝜕𝑢

𝜕𝑡
}

= ℒ{Ω} + ℒ {
𝜕2𝑢

𝜕𝑦2
} − ℒ{𝐿1𝑢} 

Or, 
𝑠ℒ{𝑢(𝑦, 𝑡)}

= 𝑒−𝑦 + ℒ {𝑠
𝜕𝑢

𝜕𝑡
} + ℒ{Ω} + ℒ {

𝜕2𝑢

𝜕𝑦2
}

− ℒ{𝐿1𝑢}                                                          (12) 

Therefore, ℒ{𝑢(𝑦, 𝑡)} =
𝑒−𝑦

𝑠
+

1

𝑠
 ℒ{Ω} +

1

𝑠
[ℒ {

𝜕2𝑢

𝜕𝑦2
} +

𝑠ℒ {
𝜕𝑢

𝜕𝑡
} − 𝐿1ℒ{𝑢}]                             (13) 

Taking the Laplace inverse of (3.34), we have, 

ℒ−1ℒ{𝑢(𝑦, 𝑡)} = ℒ−1 {
𝑒−𝑦

𝑠
} + ℒ−1 {

1

𝑠
 ℒ{Ω}}

+ ℒ−1 [
1

𝑠
[ℒ {

𝜕2𝑢

𝜕𝑦2
} + 𝑠ℒ {

𝜕𝑢

𝜕𝑡
}

− 𝐿1ℒ{𝑢}]] 
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Or, 
𝑢(𝑦, 𝑡)
= Ω + 𝑒−𝑦

+ ℒ−1 [
1

𝑠
[ℒ {

𝜕2𝑢

𝜕𝑦2
} + 𝑠ℒ {

𝜕𝑢

𝜕𝑡
}

− 𝐿1ℒ{𝑢}]]                                                          (14) 

Applying the Homotopy Perturbation techniques, (14) yields. 

∑ 𝑝𝑛

∞

𝑛=0

𝑢𝑛(𝑦, 𝑡) = Ω + 𝑒−𝑦

+ 𝑝 [ℒ−1 [
1

𝑠
[ℒ {

𝜕2𝑢

𝜕𝑦2
} + 𝑠ℒ {

𝜕𝑢

𝜕𝑡
}

− 𝐿1ℒ{𝑢}]]]                            (15) 

Comparing the coefficients of the like powers of ′𝑝′ on both sides 

of 𝑒𝑞𝑛. (15), the following approximations are obtained; 

𝑝0: 𝑢0(𝑦, 𝑡)
= Ω + 𝑒−𝑦                                                                        (16) 

𝑝1: 𝑢1(𝑦, 𝑡) = ℒ−1 [
1

𝑠
[ℒ {

𝜕2𝑢0

𝜕𝑦2
} + 𝑠ℒ {

𝜕𝑢0

𝜕𝑡
} − 𝐿1ℒ{𝑢0}]] 

= ℒ−1 [
1

𝑠
[ℒ{𝑒−𝑦} + 𝑠ℒ{−𝑒−𝑦} − 𝐿1ℒ{Ω + 𝑒−𝑦}]] 

= ℒ−1 [
𝑒−𝑦

𝑠2 −
𝑠𝑒−𝑦

𝑠2 −
1

𝑠2
(Ω + 𝑒−𝑦)] 

= ℒ−1 [(
𝑒−𝑦

𝑠2 ) − 𝑠 (
𝑒−𝑦

𝑠2 ) −
𝐿1Ω

𝑠2 −
𝐿1e−y

𝑠2 ] 

𝑢1(𝑦, 𝑡)
= (𝑒−𝑦 − 𝑠𝑒−𝑦 − 𝐿1Ω
− 𝐿1𝑒−𝑦)𝑡                                                                              (17) 

𝑝2: 𝑢2(𝑦, 𝑡) = ℒ−1 [
1

𝑠
[ℒ {

𝜕2𝑢1

𝜕𝑦2
} + 𝑠ℒ {

𝜕𝑢1

𝜕𝑡
} − 𝐿1ℒ{𝑢0}]] 

= ℒ−1 [
1

𝑠
{ℒ(𝑒−𝑦 − 𝑠𝑒−𝑦 − 𝐿1𝑒−𝑦)𝑡}

+ 𝑠ℒ{(𝑠𝑒−𝑦 + 𝐿1𝑒−𝑦 − 𝑒−𝑦)𝑡}
− 𝐿1ℒ{(𝑒−𝑦 − 𝑠𝑒−𝑦 − 𝐿1Ω

− 𝐿1𝑒−𝑦)𝑡}] 

= ℒ−1 [(
𝑒−𝑦 − 𝑠𝑒−𝑦 − 𝐿1𝑒−𝑦

𝑠3 )

+ (
𝑠2𝑒−𝑦 + 𝑠𝐿1𝑒−𝑦 − 𝑠𝑒−𝑦

𝑠3
)

− 𝐿1 {(
𝑒−𝑦 − 𝑠𝑒−𝑦 − 𝐿1Ω − 𝐿1𝑒−𝑦

𝑠3 )}] 

= (𝑒−𝑦 − 𝑠𝑒−𝑦 − 𝐿1𝑒−𝑦)
𝑡2

2

+ (𝑠2𝑒−𝑦 + 𝑠𝐿1𝑒−𝑦 − 𝑠𝑒−𝑦)
𝑡2

2
− (𝐿1𝑒−𝑦 − 𝑠𝐿1𝑒−𝑦 − 𝐿1

2Ω

− 𝐿1
2𝑒−𝑦)

𝑡2

2!
 

𝑢2(𝑦, 𝑡) = (𝑠2𝑒−𝑦 − 2𝑠𝑒−𝑦 + 2𝐿1𝑠𝑒−𝑦 − 2𝐿1𝑒−𝑦 − 𝐿1
2Ω

− 𝐿1
2𝑒−𝑦 − 𝑒−𝑦)

𝑡2

2
                   (18) 

𝑝3: 𝑢3(𝑦, 𝑡) = ℒ−1 [
1

𝑠
[ℒ {

𝜕2𝑢2

𝜕𝑦2
} + 𝑠ℒ {

𝜕𝑢2

𝜕𝑡
} − 𝐿1ℒ{𝑢2}]] 

= ℒ−1 [
1

𝑠
{ℒ(𝑠2𝑒−𝑦 − 2𝑠𝑒−𝑦 + 2𝐿1𝑠𝑒−𝑦 − 2𝐿1𝑒−𝑦

− 𝐿1
2𝑒−𝑦 − 𝑒−𝑦)

𝑡2

2!
}

+ 𝑠ℒ {(−𝑠2𝑒−𝑦 + 2𝑠𝑒−𝑦 − 2𝐿1𝑠𝑒−𝑦

+ 2𝐿1𝑒−𝑦 + 𝐿1
2𝑒−𝑦 + 𝑒−𝑦)

𝑡2

2!
}

− 𝐿1ℒ {(𝑠2𝑒−𝑦 − 2𝑠𝑒−𝑦 + 2𝐿1𝑠𝑒−𝑦

− 2𝐿1𝑒−𝑦 − 𝐿1
2Ω − 𝐿1

2𝑒−𝑦 − 𝑒−𝑦)
𝑡2

2!
}] 

= ℒ−1 [
1

𝑠4
(𝑠2𝑒−𝑦 − 2𝑠𝑒−𝑦 + 2𝐿1𝑠𝑒−𝑦 − 2𝐿1𝑒−𝑦 − 𝐿1

2𝑒−𝑦

− 𝑒−𝑦)

+
1

𝑠4
(−𝑠2𝑒−𝑦 − 2𝑠2𝑒−𝑦 − 2𝐿1𝑠2𝑒−𝑦

+ 2𝐿1𝑠𝑒−𝑦 + 𝐿1
2𝑠𝑒−𝑦 + 𝑠𝑒−𝑦)

−
1

𝑠4
(𝑠2𝐿1𝑒−𝑦 − 2𝑠𝐿1𝑒−𝑦 + 2𝐿1

2𝑠𝑒−𝑦

− 2𝐿1
2𝑒−𝑦 − 𝐿1

3Ω − 𝐿1
3𝑒−𝑦 − 𝐿1𝑒−𝑦)] 

𝑢3(𝑦, 𝑡)

= (−𝑠3𝑒−𝑦 − 3𝐿1𝑠2𝑒−𝑦 − 𝑠2𝑒−𝑦 − 𝐿1
2𝑠𝑒−𝑦 + 6𝐿1𝑠𝑒−𝑦

− 𝑠𝑒−𝑦 + 𝐿1
3𝑒−𝑦 + 𝐿1

3Ω + 𝐿1
2𝑒−𝑦 − 𝐿1𝑒−𝑦

− 𝑒−𝑦)
𝑡3

3!
                                                                    (19) 

Therefore, the solution of 𝑒𝑞𝑛. (15) is obtained by adding together 

𝑒𝑞𝑛𝑠. (16) − (20), i.e, 

𝑢(𝑦, 𝑡)
= 𝑢0(𝑦, 𝑡) + 𝑢1(𝑦, 𝑡) + 𝑢2(𝑦, 𝑡) + 𝑢3(𝑦, 𝑡)
+ ⋯                                                                             (20) 

Thus, 𝑢(𝑦, 𝑡) = (Ω + 𝑒−𝑦) + (𝑒−𝑦 − 𝑠𝑒−𝑦 − 𝐿1Ω −
𝐿1𝑒−𝑦)𝑡 + (𝑠2𝑒−𝑦 − 2𝑠𝑒−𝑦 + 2𝐿1𝑠𝑒−𝑦 − 2𝐿1𝑒−𝑦 −

𝐿1
2Ω − 𝐿1

2e−y − 𝑒−𝑦)
𝑡2

2!
+ (−𝑠3𝑒−𝑦 − 3𝐿1𝑠2𝑒−𝑦 −

𝑠2𝑒−𝑦 − 𝐿1
2𝑠𝑒−𝑦 + 6𝐿1𝑠𝑒−𝑦 − 𝑠𝑒−𝑦 + 𝐿1

3𝑒−𝑦 + 𝐿1
3Ω +

𝐿1
2𝑒−𝑦 − 𝐿1𝑒−𝑦 − 𝑒−𝑦)

𝑡3

3!
+

⋯                                                            (21) 
Equation (21) gives the solution to the velocity equation (6). 
Now, taking the Laplace transform of 𝑒𝑞𝑛. (7), one obtains, 

ℒ [  
𝜕𝜃

𝜕𝑡
] − ℒ [𝑠

𝜕𝜃

𝜕𝑦
]

= ℒ [
1

𝑝𝑟

𝜕2𝜃

𝜕𝑦2] + ℒ [𝐸𝑐 (
𝜕𝑢

𝜕𝑦
)

2

]

+ ℒ[𝑁𝜃]                                                       (22) 

But ℒ [  
𝜕𝜃

𝜕𝑡
] = 𝑠ℒ[𝜃(𝑦, 𝑡)] − 𝜃(𝑦, 0), 

Thus, equation (22) becomes 
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𝑠ℒ[𝜃(𝑦, 𝑡)] − 𝜃(𝑦, 0) − ℒ [𝑠
𝜕𝜃

𝜕𝑦
]

= ℒ [
1

𝑝𝑟

𝜕2𝜃

𝜕𝑦2
] + ℒ [𝐸𝑐 (

𝜕𝑢

𝜕𝑦
)

2

]

+ 𝑁ℒ[𝜃]                      
Or, 

𝑠ℒ[𝜃(𝑦, 𝑡)] − 𝑒−𝑦 =
1

𝑝𝑟
ℒ [

𝜕2𝜃

𝜕𝑦2] + 𝐸𝑐ℒ [(
𝜕𝑢

𝜕𝑦
)

2

] + 𝑠ℒ [
𝜕𝜃

𝜕𝑦
]

+ 𝑁ℒ[𝜃]                                       (23) 

Further simplification yields; 

ℒ[𝜃(𝑦, 𝑡)] =
𝑒−𝑦

𝑠
+

1

𝑠
{

1

𝑝𝑟
ℒ [

𝜕2𝜃

𝜕𝑦2] + 𝑠ℒ [
𝜕𝜃

𝜕𝑦
] + 𝑁ℒ[𝜃]

+ 𝐸𝑐ℒ [(
𝜕𝑢

𝜕𝑦
)

2

]}                                (24) 

Taking the inverse Laplace transform of (24), we have; 

ℒ−1{ℒ[𝜃(𝑦, 𝑡)]} = ℒ−1 {
𝑒−𝑦

𝑠

+
1

𝑠
{

1

𝑝𝑟
ℒ [

𝜕2𝜃

𝜕𝑦2
] + 𝑠ℒ [

𝜕𝜃

𝜕𝑦
] + 𝑁ℒ[𝜃]

+ 𝐸𝑐ℒ [(
𝜕𝑢

𝜕𝑦
)

2

]}}      

Or, 

𝜃(𝑦, 𝑡) = 𝑒−𝑦 + ℒ−1 {
1

𝑠
{

1

𝑝𝑟
ℒ [

𝜕2𝜃

𝜕𝑦2
] + 𝑠ℒ [

𝜕𝜃

𝜕𝑦
] + 𝑁ℒ[𝜃]

+ 𝐸𝑐ℒ [(
𝜕𝑢

𝜕𝑦
)

2

]}}                         (25) 

Applying the Homotopy Perturbation method to (25), we get, 

∑ 𝑝𝑛

∞

𝑛=0

𝜃𝑛(𝑦, 𝑡) = 𝑒−𝑦

+ 𝑝 [ℒ−1 [
1

𝑠
[

1

𝑝𝑟
ℒ [

𝜕2𝜃

𝜕𝑦2] + 𝑠ℒ [
𝜕𝜃

𝜕𝑦
]

+ 𝑁ℒ[𝜃] + 𝐸𝑐ℒ[𝐻𝑛(𝑢)]]]]      (26) 

Where 𝐻𝑛(𝑢) is the He’s polynomial for the non-linear term (
𝜕𝑢

𝜕𝑦
)

2
 

which are: 

𝐻0(𝑢) = (𝑢0
′ )2 

𝐻1(𝑢) = 2𝑢0
′ 𝑢1

′  

𝐻2(𝑢) = 2𝑢0
′ 𝑢2

′ + (𝑢1
′ )2 

𝐻2(𝑢) = 2𝑢1
′ 𝑢2

′ , … 

Now comparing like powers of 𝑝 on both sides of 𝑒𝑞𝑛. (26) and 
equating their coefficient gives; 

𝑝0: 𝜃0(𝑦, 𝑡)
= 𝑒−𝑦                                                                           (27)  

𝑝1: 𝜃1(𝑦, 𝑡) = ℒ−1 {
1

𝑠
{

1

𝑝𝑟
ℒ [

𝜕2𝜃0

𝜕𝑦2 ] + 𝑠ℒ [
𝜕𝜃0

𝜕𝑦
] + 𝑁ℒ[𝜃0]

+ 𝐸𝑐ℒ[𝐻0(𝑢)]}}                         (28)  

And, 𝑢0 = Ω + 𝑒−𝑦, from 𝑒𝑞𝑛. (3.37) 
Which implies, 
 𝑢0

′ = −𝑒−𝑦 , 
(𝑢0

′ )2 = 𝑒−2𝑦 , 
𝜃0 = 𝑒−𝑦 , 𝑓𝑟𝑜𝑚 𝑒𝑞𝑛. (27) 
Which implies, 
𝜃0

′ = −𝑒−𝑦 , 
𝜃0

′′ = 𝑒−𝑦 . 
Thus, 

𝜃1(𝑦, 𝑡) = ℒ−1 {
1

𝑠
{

1

𝑝𝑟
ℒ[𝑒−2𝑦] + 𝑠ℒ[−𝑒−𝑦] + 𝑁ℒ[𝑒−𝑦]

+ 𝐸𝑐ℒ[𝑒−2𝑦]}} 

Or,  

𝜃1(𝑦, 𝑡) = ℒ−1 {
1

𝑠
{

𝑒−2𝑦

𝑠𝑝𝑟
−

𝑠

𝑠
𝑒−𝑦 +

𝑁

𝑠
𝑒−𝑦

+
𝐸𝑐

𝑠
𝑒−2𝑦}}                        

Simplification yields, 

𝜃1(𝑦, 𝑡) = ℒ−1 {
1

𝑠2 [
𝑒−2𝑦

𝑝𝑟
− 𝑠𝑒−𝑦 + 𝑁𝑒−𝑦 + 𝐸𝑐𝑒−2𝑦]} 

Hence, 𝜃1(𝑦, 𝑡) = (
𝑒−2𝑦

𝑝𝑟
− 𝑠𝑒−𝑦 + 𝑁𝑒−𝑦 +

𝐸𝑐𝑒−2𝑦) 𝑡                                                                   (29)  

𝑝2: 𝜃2(𝑦, 𝑡) = ℒ−1 {
1

𝑠
{

1

𝑝𝑟
ℒ [

𝜕2𝜃1

𝜕𝑦2
] + 𝑠ℒ [

𝜕𝜃1

𝜕𝑦
] + 𝑁ℒ[𝜃1]

+ 𝐸𝑐ℒ[𝐻2(𝑢)]}}                          (30) 

Since, 𝐻1(𝑢) = 2𝑢0
′ 𝑢1 

Thus, 𝐻1(𝑢) = 2(−𝑒−𝑦)[(𝑒−𝑦 − 𝑠𝑒−𝑦−𝐿1Ω − 𝐿1𝑒−𝑦)𝑡], 
from 𝑒𝑞𝑛. (17). 

= 2[(−𝑒−2𝑦 + 𝑠𝑒−2𝑦+𝐿1Ωe−y + 𝐿1𝑒−2𝑦)] 

= (2𝑠𝑒−2𝑦

+ 𝐿1𝑒−2𝑦−𝑒−2𝑦

+ 𝐿1Ωe−y)𝑡                                                                                         (31) 

𝑒𝑞𝑛. (3.50), 

𝜃1
′

= [(
−2𝑒−2𝑦

𝑝𝑟
+ 𝑠𝑒−𝑦 − 𝑁e−y

− 2𝐸𝑐𝑒−2𝑦) 𝑡]                                                                           (32) 

𝜃1
′′

= [(
4𝑒−2𝑦

𝑝𝑟
− 𝑠𝑒−𝑦 + 𝑁e−y

+ 4𝐸𝑐𝑒−2𝑦) 𝑡]                                                                             (33) 

Thus, 
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𝜃2(𝑦, 𝑡) = ℒ−1 {
1

𝑠
{

1

𝑝𝑟
ℒ [(

4𝑒−2𝑦

𝑝𝑟
− 𝑠𝑒−𝑦 + 𝑁e−y

+ 4𝐸𝑐𝑒−2𝑦) 𝑡]

+ 𝑠ℒ [(
−2𝑒−2𝑦

𝑝𝑟
+ 𝑠𝑒−𝑦 − 𝑁e−y

− 2𝐸𝑐𝑒−2𝑦) 𝑡]

+ 𝑁ℒ [(
−2𝑒−2𝑦

𝑝𝑟
+ 𝑠𝑒−𝑦 − 𝑁e−y

− 2𝐸𝑐𝑒−2𝑦) 𝑡]

+ 𝐸𝑐ℒ[(2𝑠𝑒−2𝑦

+ 𝐿1𝑒−2𝑦−𝑒−2𝑦 + 𝐿1Ωe−y)𝑡]}} 

Or, 
𝜃2(𝑦, 𝑡)

= ℒ−1 {
1

𝑠3 [
4𝑒−2𝑦

𝑝𝑟
2 −

𝑠𝑒−𝑦

𝑝𝑟
+

𝑁𝑒−𝑦

𝑝𝑟
+

4𝐸𝑐𝑒−2𝑦

𝑝𝑟
−

2𝑠𝑒−2𝑦

𝑝𝑟

+ 𝑠2𝑒−𝑦 − 𝑁𝑠𝑒−𝑦 − 2𝐸𝑐𝑠𝑒−2𝑦 −
2𝑁𝑒−2𝑦

𝑝𝑟
+ 𝑁𝑠𝑒−𝑦

− 𝑁2𝑒−𝑦 − 2𝐸𝑐𝑁𝑒−2𝑦 + 2𝐸𝑐𝑠𝑒−2𝑦 + 𝐸𝑐𝐿1𝑒−2𝑦 − 𝐸𝑐𝑒−2𝑦

+ 𝐸𝑐𝐿1Ω𝑒−𝑦]}                                                                  (34) 

Further simplification yields, 
𝜃2(𝑦, 𝑡)

= (
4𝑒−2𝑦

𝑝𝑟
2 −

𝑠𝑒−𝑦

𝑝𝑟
+

𝑁𝑒−𝑦

𝑝𝑟
+

4𝐸𝑐𝑒−2𝑦

𝑝𝑟
−

2𝑠𝑒−2𝑦

𝑝𝑟
+ 𝑠2𝑒−𝑦

−
2𝑁𝑒−2𝑦

𝑝𝑟
− 𝑁2𝑒−𝑦 − 2𝐸𝑐𝑁𝑒−2𝑦 + 𝐸𝑐𝐿1𝑒−2𝑦 − 𝐸𝑐𝑒−2𝑦

+ 𝐸𝑐𝐿1Ω𝑒−𝑦)
𝑡2

2!
                                      (35) 

𝑝3: 𝜃3(𝑦, 𝑡) = ℒ−1 {
1

𝑠
{

1

𝑝𝑟
ℒ [

𝜕2𝜃2

𝜕𝑦2 ] + 𝑠ℒ [
𝜕𝜃2

𝜕𝑦
] + 𝑁ℒ[𝜃2]

+ 𝐸𝑐ℒ[𝐻2(𝑢)]}} 

Since, 𝐻2 = 2𝑢0
′ 𝑢2

′ + (𝑢1
′ )2 

Where, 𝑢0 = Ω + 𝑒−𝑦, 𝑒𝑞𝑛. (16) 

𝑢0
′ = −𝑒−𝑦 

𝑢2 = (𝑠2𝑒−𝑦 − 2𝑠𝑒−𝑦 + 2𝐿1𝑒−𝑦 − 2𝐿1𝑒−𝑦 − 𝐿1
2Ω −

𝐿1
2𝑒−𝑦 − 𝑒−𝑦)

𝑡2

2
, 𝑒𝑞𝑛. (18) 

Thus, 𝑢2
′ = (−𝑠2𝑒−𝑦 + 2𝑠𝑒−𝑦 − 2𝐿1𝑒−𝑦 + 2𝐿1𝑒−𝑦 +

𝐿1
2𝑒−𝑦 + 𝑒−𝑦)

𝑡2

2
 

And, 2𝑢0
′ 𝑢2

′ = 2(−𝑒−𝑦) [(−𝑠2𝑒−𝑦 + 2𝑠𝑒−𝑦 − 2𝐿1𝑒−𝑦 +

2𝐿1𝑒−𝑦 + 𝐿1
2Ω + 𝐿1

2𝑒−𝑦 + 𝑒−𝑦)
𝑡2

2
] 

Or, 

2𝑢0
′ 𝑢2

′ = (2𝑠2𝑒−2𝑦 − 4𝑠𝑒−2𝑦 + 2𝐿1𝑒−𝑦 − 4𝐿1𝑒−2𝑦

− 2𝐿1
2𝑒−2𝑦

− 4𝑒−2𝑦)
𝑡2

2
                     (36) 

𝑢1 = (𝑒−𝑦 − 𝑠𝑒−𝑦 − 𝐿1Ω − 𝐿1𝑒−𝑦)𝑡, 𝑒𝑞𝑛. (17) 

Thus,  
𝑢1

′ = (−𝑒−𝑦 + 𝑠𝑒−𝑦 + 𝐿1𝑒−𝑦)𝑡 

And, (𝑢1
′ )2 = [(−𝑒−𝑦 + 𝑠𝑒−𝑦 + 𝐿1𝑒−𝑦)𝑡][(−𝑒−𝑦 +

𝑠𝑒−𝑦 + 𝐿1𝑒−𝑦)𝑡] 
Or,  
(𝑢1

′ )2 = (𝑒−2𝑦 − 𝑠𝑒−2𝑦 − 𝐿1𝑒−2𝑦 − 𝑠𝑒−2𝑦 + 𝑠2𝑒−2𝑦

+ 𝐿1𝑠𝑒−2𝑦 − 𝐿1𝑒−2𝑦 + 𝐿1𝑠𝑒−2𝑦

+ 𝐿1
2𝑒−2𝑦)𝑡2     

Further simplification yields, 
(𝑢1

′ )2 = (𝑒−2𝑦 − 2𝑠𝑒−2𝑦 − 2𝐿1𝑒−2𝑦 + 𝑠2𝑒−2𝑦

+ 2𝐿1𝑠𝑒−2𝑦

+ 𝐿1
2𝑒−2𝑦)𝑡2                           (37) 

Hence, 

𝐻2 = 2𝑢0
′ 𝑢2

′ + (𝑢1
1)2 

= (4𝑠2𝑒−2𝑦 − 8𝑠𝑒−2𝑦 + 2𝐿1𝑒−𝑦 − 8𝐿1𝑒−2𝑦 + 4𝐿1𝑠𝑒−2𝑦

− 4𝑒−2𝑦)
𝑡2

2
                               (38) 

And,  

𝜃2
′ = (

−8𝑒−2𝑦

𝑝𝑟
2 −

𝑠𝑒−𝑦

𝑝𝑟
−

𝑁𝑒−𝑦

𝑝𝑟
−

8𝐸𝑐𝑒−2𝑦

𝑝𝑟
+

4𝑠𝑒−2𝑦

𝑝𝑟

− 𝑠2𝑒−𝑦 +
4𝑁𝑒−2𝑦

𝑝𝑟
+ 𝑁2𝑒−𝑦

+ 4𝐸𝑐𝑁𝑒−2𝑦 − 2𝐸𝑐𝐿1𝑒−2𝑦 + 2𝐸𝑐𝑒−2𝑦

− 𝐸𝑐𝐿1Ω𝑒−𝑦)
𝑡2

2
                              (39) 

 

𝜃2
′′ = (

16𝑒−2𝑦

𝑝𝑟
2 −

𝑠𝑒−𝑦

𝑝𝑟
+

𝑁𝑒−𝑦

𝑝𝑟
+

16𝐸𝑐𝑒−2𝑦

𝑝𝑟
−

8𝑠𝑒−2𝑦

𝑝𝑟

+ 𝑠2𝑒−𝑦 −
8𝑁𝑒−2𝑦

𝑝𝑟
− 𝑁2𝑒−𝑦

− 8𝐸𝑐𝑁𝑒−2𝑦 + 4𝐸𝑐𝐿1𝑒−2𝑦 − 4𝐸𝑐𝑒−2𝑦

+ 𝐸𝑐𝐿1Ω𝑒−𝑦)
𝑡2

2
                            (40) 

Thus,  

𝜃3(𝑦, 𝑡) = ℒ−1 {
1

𝑠
{

1

𝑝𝑟
ℒ[𝐴𝑡2] + 𝑠ℒ [

𝐵𝑡2

2
] + 𝑁ℒ [

𝐶𝑡2

2
]

+ 𝐸𝑐ℒ [
𝐷𝑡2

2
]}} 
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𝜃3(𝑦, 𝑡)

= (
32𝑒−2𝑦

𝑝𝑟
3 −

2𝑠𝑒−𝑦

𝑝𝑟
2 +

2𝑁𝑒−𝑦

𝑝𝑟
2 +

32𝐸𝑐𝑒−2𝑦

𝑝𝑟
2 −

16𝑠𝑒−2𝑦

𝑝𝑟
2

+
2𝑠2𝑒−𝑦

𝑝𝑟
−

16𝑁𝑒−2𝑦

𝑝𝑟
2 −

2𝑁2𝑒−𝑦

𝑝𝑟
−

16𝐸𝑐𝑁𝑒−2𝑦

𝑝𝑟

+
8𝐸𝑐𝐿1𝑒−2𝑦

𝑝𝑟
−

8𝐸𝑐𝑒−2𝑦

𝑝𝑟
+

2𝐸𝑐𝐿1Ω𝑒−𝑦

𝑝𝑟
−

16𝑠𝑒−2𝑦

𝑝𝑟
2

+
2𝑠2𝑒−𝑦

𝑝𝑟
−

2𝑁𝑠𝑒−𝑦

𝑝𝑟
−

16𝐸𝑐𝑠𝑒−2𝑦

𝑝𝑟
+

2𝑠𝑒−2𝑦

𝑝𝑟
− 2𝑠2𝑒−𝑦

+
8𝑁𝑠𝑒−2𝑦

𝑝𝑟
+ 2𝑁2𝑠𝑒−𝑦 − 16𝐸𝑐𝑁𝑠𝑒−2𝑦 + 8𝐸𝑐𝑠𝐿1𝑒−2𝑦

− 8𝐸𝑐𝑠𝑒−2𝑦 + 2𝐸𝑐𝐿1sΩ𝑒−𝑦 +
8𝑁𝑒−2𝑦

𝑝𝑟
2 −

2𝑁𝑠𝑒−𝑦

𝑝𝑟

+
2𝑁2𝑒−𝑦

𝑝𝑟
+

8𝐸𝑐𝑁𝑒−2𝑦

𝑝𝑟
−

4𝑁𝑠𝑒−2𝑦

𝑝𝑟
+ 2𝑁𝑠2𝑒−𝑦

−
4𝑁2𝑒−2𝑦

𝑝𝑟
− 2𝑁3𝑒−𝑦 − 4𝐸𝑐𝑁2𝑒−2𝑦 + 2𝐸𝑐𝑁𝐿1𝑒−2𝑦

− 2𝐸𝑐𝑁𝑒−2𝑦 + 2𝐸𝑐𝐿1NΩ𝑒−𝑦 + 4𝐸𝑐𝑠2𝑒−2𝑦 − 16𝐸𝑐𝑠𝑒−2𝑦

+ 16𝐸𝑐𝐿1𝑒−𝑦 − 16𝐸𝑐𝐿1𝑒−2𝑦 + 8𝐸𝑐𝐿1𝑠𝑒−2𝑦

− 8𝐸𝑐𝑒−2𝑦)
𝑡3

3!
                                                        (41) 

 
Therefore, the solution to the temperature equation (7) is;  

𝜃(𝑦, 𝑡) = 𝜃0(𝑦, 𝑡) + 𝜃1(𝑦, 𝑡) + 𝜃2(𝑦, 𝑡) + 𝜃3(𝑦, 𝑡)
+ ⋯                                                             

𝜃(𝑦, 𝑡) = 𝑒−𝑦 + (
𝑒−2𝑦

𝑝𝑟
− 𝑠𝑒−𝑦 + 𝑁𝑒−𝑦 + 𝐸𝑐𝑒−2𝑦) 𝑡 +

(
4𝑒−2𝑦

𝑝𝑟
2 −

𝑠𝑒−𝑦

𝑝𝑟
+

𝑁𝑒−𝑦

𝑝𝑟
+

4𝐸𝑐𝑒−2𝑦

𝑝𝑟
−

2𝑠𝑒−2𝑦

𝑝𝑟
+ 𝑠2𝑒−𝑦 −

2𝑁𝑒−2𝑦

𝑝𝑟
− 𝑁2𝑒−𝑦 − 2𝐸𝑐𝑁𝑒−2𝑦 + 𝐸𝑐𝐿1𝑒−2𝑦 − 𝐸𝑐𝑒−2𝑦 +

𝐸𝑐𝐿1Ω𝑒−𝑦)
𝑡2

2!
+ (

32𝑒−2𝑦

𝑝𝑟
3 −

2𝑠𝑒−𝑦

𝑝𝑟
2 +

2𝑁𝑒−𝑦

𝑝𝑟
2 +

32𝐸𝑐𝑒−2𝑦

𝑝𝑟
2 −

16𝑠𝑒−2𝑦

𝑝𝑟
2 +

2𝑠2𝑒−𝑦

𝑝𝑟
−

16𝑁𝑒−2𝑦

𝑝𝑟
2 −

2𝑁2𝑒−𝑦

𝑝𝑟
−

16𝐸𝑐𝑁𝑒−2𝑦

𝑝𝑟
+

8𝐸𝑐𝐿1𝑒−2𝑦

𝑝𝑟
−

8𝐸𝑐𝑒−2𝑦

𝑝𝑟
+

2𝐸𝑐𝐿1Ω𝑒−𝑦

𝑝𝑟
−

16𝑠𝑒−2𝑦

𝑝𝑟
2 +

2𝑠2𝑒−𝑦

𝑝𝑟
−

2𝑁𝑠𝑒−𝑦

𝑝𝑟
−

16𝐸𝑐𝑠𝑒−2𝑦

𝑝𝑟
+

2𝑠𝑒−2𝑦

𝑝𝑟
− 2𝑠2𝑒−𝑦 +

8𝑁𝑠𝑒−2𝑦

𝑝𝑟
+

2𝑁2𝑠𝑒−𝑦 − 16𝐸𝑐𝑁𝑠𝑒−2𝑦 + 8𝐸𝑐𝑠𝐿1𝑒−2𝑦 − 8𝐸𝑐𝑠𝑒−2𝑦 +

2𝐸𝑐𝐿1sΩ𝑒−𝑦 +
8𝑁𝑒−2𝑦

𝑝𝑟
2 −

2𝑁𝑠𝑒−𝑦

𝑝𝑟
+

2𝑁2𝑒−𝑦

𝑝𝑟
+

8𝐸𝑐𝑁𝑒−2𝑦

𝑝𝑟
−

4𝑁𝑠𝑒−2𝑦

𝑝𝑟
+ 2𝑁𝑠2𝑒−𝑦 −

4𝑁2𝑒−2𝑦

𝑝𝑟
− 2𝑁3𝑒−𝑦 − 4𝐸𝑐𝑁2𝑒−2𝑦 +

2𝐸𝑐𝑁𝐿1𝑒−2𝑦 − 2𝐸𝑐𝑁𝑒−2𝑦 + 2𝐸𝑐𝐿1NΩ𝑒−𝑦 +
4𝐸𝑐𝑠2𝑒−2𝑦 − 16𝐸𝑐𝑠𝑒−2𝑦 + 16𝐸𝑐𝐿1𝑒−𝑦 − 16𝐸𝑐𝐿1𝑒−2𝑦 +

8𝐸𝑐𝐿1𝑠𝑒−2𝑦 − 8𝐸𝑐𝑒−2𝑦)
𝑡3

3!
     

  (42) 
 
The physical momentum and heat properties such as the skin 
friction 𝐶𝑓 and Nusselt number, which are elucidated in Joseph et 

al. (2021) are; 

{

𝐶𝑓 = −
1

2√2
𝐺𝑟

−3
4⁄ (

𝜕𝑢

𝜕𝑦
)

𝑦=0

𝑁𝑢 = −
1

2√2
𝐺𝑟

−3
4⁄ (

𝜕𝜃

𝜕𝑦
)

𝑦=0

     

    (42) 
  
RESULTS AND DISCUSSION 
A turbulent boundary layer flow in the presence of constant 

pressure gradient, thermal radiation, and suction has been 
analysed. The effects of magnetic parameter 𝑀, suction parameter 

𝑆, and pressure gradient Ω, on the velocity field were determined. 
Graphs for the different flow fields have been plotted. In the same 
view; the effects of thermal radiation 𝑁, Eckert number 𝐸𝑐, prandtl 

number 𝑃𝑟, and suction parameter 𝑆 on temperaturere profile were 
also determined and graphs plotted.  
 
The default values for the pertinent flow parameters are taken as 
Arifuzzaman et al., (2018) 
Ω = 0.30, 𝑆 = 0.30, 𝑃𝑟 = 0.71, 𝑁 = 0.05, 𝐷𝑎 = 1.00, 𝑡 =
0.05, 𝐸𝑐 = 1.00  
 
To validate the present work, a numerical comparison is provided 
in Table 1. It can be seen there is no significant difference. The 

impact of flow parameters on the skin friction fC , and  Nusselt 

number   uN  is also investigated and presented in Table 2. 

 
Table 1: Validation of present study against Joseph et al (2021) for 
the Nusselt number, where,  
𝑃𝑟 = 0.71 and 𝐸𝑐 = 0 
 

 

Table 2. Computational values of the skin friction   fC  and Nusselt 

number uN   

 
Table 2 presents the effect of flow parameters on the skin friction

fC , and Nusselt number   uN . It is seen that the skin friction 

diminishes due to the increase in both magnetic and suction 
parameters. The Nusselt number increases with an increase in 
Eckert number 𝐸𝑐  and Prandtl number 𝑃𝑟  and decreases with an 

increase in suction parameter 𝑆 and radiation parameter.  
 

𝑁 Present 
Study 

Joseph et al 
(2021) 

Difference 

1.00 0.00152 0.00167 0.00015 

3.00 0.00144 0.00154 0.0001 

5.00 0.00135 0.00151 0.00016 

7.00 0.00132 0.00142 0.0001 

𝑆 𝑁 𝑀 
rP  𝐸𝑐 

fC  uN  

1.00 1.00 1.00 0.71 0.50 1.9580 0.0015 

3.00     1.9203 0.0014 

5.00 3.00    1.8841 0.0013 

7.00 5.00    1.8492 0.0012 

 7.00 3.00   1.7623 
 

  5.00   1.2562 
 

  7.00 0.11  0.3331 1.3187 

   0.31   1.1135 

   0.51 0.75  1.0450 
 

   1.00  1.0503 

    1.50  1.0609 
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Figure 2 illustrates the drag force effect on fluid flow. The velocity 
profile decreases with increment of magnetic parameter 
𝑀, (1.00 ≤ 𝑀 ≥ 7.00). The role of magnetic parameter which 
is to suppress turbulence. Physically, when magnetic field is 
applied to any field, the apparent viscosity of the fluid increases to 
the point of becoming viscous elastic solid. It is of great interest that 
yields stress of the fluid can be controlled very accurately through 
variation of the magnetic field intesity. The result is that the ability 
of the fluid to transmit force can be controlled with help of 
electomagnet which give rise to many possible control-based 
applications,including MHD power generation, electromagnetic 
casting of metals, MHD propulsion etc. 

 
Figure 2: Influence of Magnetic Parameter 𝑀 on Velocity 
 
The flow is driven by an externally imposed pressure gradient 
without motion of either plate, negative or positive pressure 
gradient increase or decrease the flow rate, respectively. This is 
illustrated in Figure 3. It is seen that increase in pressure gradient 
Ω, enhance the flow significantly. Pressure gradient is physical 
quantity that describes which direction and at what rate the 
pressure changes the most rapidly around a particular location. 
 

 
Figure 3: Influence of Pressure Gradient Ω on Velocity 
 
The impact of the suction parameter 𝑆, on velocity and temperature 
profiles is illustrated in Figures 4 and 5 respectively. It is clearly 
seen that velocity and temperature profiles diminish with an 
increase of 𝑆(1.00 ≤ 𝑆 ≤ 7.00), this is due to porosity of plates. 
 

 
Figure 4: Influence of Suction Parameter 𝑆 on Velocity 
 

 
Figure 5: Influence of Suction Parameter 𝑆 on Temperature 
 
Figure 6 depicts the temperature field for increment of thermal 
radiation parameter 𝑁 (1.00 ≤ 𝑁 ≥ 7.00). Thermal radiation is 
known as electromagnetic radiation or the conversion of thermal 
energy which generates thermal motion of particles in matter. 
Thermal radiation could be attributed due to thermal excitation. It is 
observed that the temperature field is affected significantly with 
increase in thermal radiation parameter 𝑁. Thermal radiation for a 
medium which contains it inevitably has pressure and density 
gradient, and the treatment requires the use of hydrodynamics. 
 

 
Figure 6: Influence of Thermal Radiation 𝑁 on Temperature 
 
Figure 7 shows the impression of Prandtl number, 𝑃𝑟, on 
temperature profile. The parameter, 𝑃𝑟, is the proportion of 
kinematic viscosity and thermal diffusivity which changes physically 
with temperature. For example, water, 𝑃𝑟 = 7.00 (𝑎𝑡 20°𝑐) and 

Ammonia 𝑃𝑟 = 1.38 decline more rapidly than air 𝑃𝑟 = 0.71. 

However, increase in 𝑝𝑟 depict the domination of thermal and 
diffusivity respectively. Prandtl number is used to determine 
whether heat transport occurs with either conduction or convection 
process. Since, Prandtl number is inversely proportional to thermal 
diffusivity so that increasing 𝑝𝑟 led to the decrease in temperature 
profile. 
 

 
Figure 7: Influence of Prandtl Number 𝑃𝑟 on Temperature 
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Figure 8 shows that an increase in Eckert number, 𝐸𝑐, from 0.50 
through 0.75, 1.00 to 1.50 (very high viscous heating) clearly 
boosts temperature in the porous regime. Eckert number signifies 
the quantity of mechanical energy converted via internal friction to 
thermal energy. i.e. heat dissipation. Increasing 𝐸𝑐 values will 
therefore cause an increase in thermal energy contributing to the 
flow and will heat the regime. For all nonzero values of 𝐸𝑐, the 
temperature overshoot near the wall is distinct, this overshoot 
migrates marginally further into the boundary layer with an increase 
in 𝐸𝑐. 
 

 
 Figure 8: Influence of Eckert Number 𝐸𝑐 on Temperature 
 
CONCLUSION 
This study investigated turbulent boundary layer flow under a 
constant pressure gradient and the influence of thermal radiation. 
The governing equations—the continuity, nonlinear momentum, 
and energy equations—were solved using the He-Laplace method, 
which combines the Homotopy Perturbation Method with the 
Laplace Transform technique. This approach yielded analytical 
expressions for velocity and temperature profiles. 
The effects of fluid parameters, including the magnetic 
parameter (𝑀), suction parameter (𝑆) and pressure gradient (𝛺) 
on velocity were analyzed and visualized through graphical 
representations. Similarly, the impact of thermal radiation 
parameter (𝑁), Eckert number (𝐸𝑐), Prandtl number (𝑃𝑟), and 

suction parameter (𝑆) on the temperature profile was examined 
and plotted. 
Key findings include: 

1. Temperature increases with higher thermal radiation 
parameter. 

2. Velocity decreases with an increase in magnetic 
parameter. 

3. A higher Prandtl number reduces the temperature 
profile. 

4. Both velocity and temperature decrease with increasing 
suction parameter. 

5. Velocity rises with an increase in pressure gradient. 
6. The temperature profile is enhanced by a higher Eckert 

number. 
7. Combined increases in magnetic and suction 

parameters reduce velocity. 
8. The Nusselt number improves significantly with higher 

Eckert and Prandtl numbers. 
9. Radiation and suction parameters lead to lower 

temperature distribution. 

The results have practical applications in fields such as 
automobile thermal systems, magnetohydrodynamic (MHD) 
power generators, and various industrial processes including 
polymer dye extrusion and plastic film drainage. 
 
Nomenclature 
 
 Ω                       Pressure gradient 

𝑢, 𝑣                      Dimensional velocity components of the fluid 

 𝑥, 𝑦                     Coordinate                                                                                                                                               

𝜃                          Dimensionless temperature of the fluid 

𝜎                          Stefan-Boltzmann Constant 
𝜌                          Density of the fluid 

𝜇                         Dynamic viscosity of the fluid 

𝜗                         Kinematic viscosity of the fluid 

 𝑝                        Pressure of the fluid 

𝑆                         Suction parameter 

𝑁                        Radiation parameter 

𝑀                       Magnetic parameter 

𝐿                         Length of the plate 

𝐾                        Coefficient of thermal conductivity 

𝑡                         Dimensionless time 

𝐶𝑝                       Specific temperature of the fluid under constant 

pressure 
𝑃𝑟                        Prandlt number 

𝐸𝑐                       Eckert number                        
𝑇                         Temperature of the fluid 

𝑇0                        Initial temperature of the fluid 

𝑇𝑤                       Temperature of the flat plate 

𝑇∞                       Temperature of the fluid at the edge of the 
boundary layer 
𝐿1                        Auxilliary linear operator 

ℒ                         Auxilliary nonlinear operator 
𝜕𝑞𝑟

𝜕𝑦
                       Local radiant absorption 

𝑞𝑟                        Relative energy flux 

𝛿                          Dimensional boundary layer thickness 

𝑈∞                       Free stream velocity 
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