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ABSTRACT  
Outliers pose significant challenges to statistical modelling by 
distorting inferences and forecasts. This study examines the 
robustness of Vector Autoregression (VAR) and Bayesian VAR 
(BVAR) models in the presence of outliers, employing simulation-
based analysis across varying sample sizes (small: 16–32, 
medium: 50–100, large: 500–1000) and outlier magnitudes (small, 
medium, large). Using root mean squared error (RMSE) and mean 
absolute error (MAE) as criteria, the non-Bayesian VAR model 
(VAR2) was compared against four Bayesian variants (BVAR1–
BVAR4) with Sims-Zha priors. Results demonstrate VAR2’s 
superior resilience to outliers, consistently achieving lower forecast 
errors across all scenarios. Bayesian models, while improving with 
larger samples, lagged due to excessive shrinkage of outlier-driven 
signals. VAR2’s parsimonious structure avoided over-reliance on 
prior assumptions, proving particularly advantageous in smaller 
datasets (n<100), where BVARs exhibited higher sensitivity. 
Conversely, BVAR4 showed moderate improvement in large 
samples but never surpassed VAR2. The study concludes that in 
outlier-prone environments, VAR2 is preferable for its robustness 
and simplicity. Practitioners should reserve BVARs for contexts 
requiring Bayesian uncertainty quantification, ideally with tailored 
priors to mitigate outlier effects. Recommending VAR2 for most 
scenarios, with BVAR4 considered only when domain-specific 
priors justify added complexity. These findings highlight the trade-
offs between model flexibility and robustness, guiding empirical 
choices in macroeconomic forecasting and policy analysis. 
 
Keywords: Vector Autoregressive, Bayesian VAR, Outliers, 
Forecasting Accuracy, Simulation Study. 
  
INTRODUCTION 
The Vector Autoregressive (VAR) model, introduced by Sims 
(1980), plays a central role in modeling dynamic interrelationships 
among macroeconomic variables and has been applied across 
various disciplines, including medicine and biology. It exists in three 
forms—reduced-form, recursive, and structural—with the Bayesian 
VAR (BVAR) emerging as a valuable extension that incorporates 
prior information to improve forecasts, particularly in small-sample 
contexts. BVAR has been used to examine the effects of 
government expenditure shocks (GES) on GDP, inflation, and 
interest rates, especially during the COVID-19 pandemic, 
highlighting its utility in economic policy analysis. However, one 
major challenge for both VAR and BVAR models is the presence 
of outliers, which can distort estimates and forecasts. While some 
literature supports BVAR’s robustness in such situations, others 
argue for excluding extreme data or adjusting model volatility. This 
study addresses these conflicting views by testing VAR and BVAR 

performance under varying outlier magnitudes and sample sizes 
using simulation. The results reveal that classical VAR models may 
outperform BVARs, especially in smaller samples, challenging the 
automatic preference for Bayesian methods in outlier-prone 
settings. These findings are particularly relevant for data-scarce 
environments and offer practical guidance on when to apply 
simpler versus more complex models for reliable economic 
forecasting and policy planning. A growing body of literature has 
explored the performance, robustness, and application of Vector 
Autoregressive (VAR) and Bayesian VAR (BVAR) models, 
particularly in the presence of outliers, multicollinearity, and short-
term data challenges. Luis and Florens (2022), in their investigation 
of BVARs for the Euro Area, presented a methodology to account 
for outliers, particularly pre-2020, and found mild improvements in 
point forecasts but deterioration in density forecasts. They thus 
recommend incorporating outliers only around key known events, 
such as the onset of COVID-19. Similarly, Oluwadare and 
Oluwaseun (2023) evaluated Bayesian estimation of simultaneous 
equation models (SEMs) under multicollinearity and outlier 
conditions and found that Bayesian techniques outperformed 
classical ones under such complexities. However, when no such 
issues were present, both techniques performed similarly. Andrea 
et al. (2022) proposed augmenting BVARs with outlier-adjusted 
stochastic volatility, which improved density forecasting during 
abnormal periods like the COVID-19 pandemic. 
On the other hand, some scholars advocate for simpler strategies. 
Michele and Giorgio (2020) suggested dropping outlier 
observations such as post-March 2020 data for parameter 
estimation but cautioned against excluding them for forecasting. 
Schorfheide and Song (2021) adopted a mixed-frequency VAR 
without altering model specifications but excluded extreme COVID-
19 period data, which proved beneficial for forecast recovery. 
These mixed approaches emphasize the ongoing debate about 
how best to handle outliers in VAR-type models. 
Numerous empirical applications have also emerged from the 
Nigerian context, especially from the works of Adenomon and 
collaborators. Adenomon and Oyejola (2013) applied SVAR 
models to examine the impact of agriculture and industry on 
Nigeria’s GDP, revealing that agriculture had a stronger influence. 
They recommended targeted incentives to revitalize both sectors. 
In 2015, Adenomon conducted a simulation comparing classical 
VAR and Sims-Zha BVAR under different collinearity conditions. 
Results from 10,000 iterations showed BVARs performed better 
with very short time series (T=8), while classical VARs worked well 
for longer series (T=16), suggesting model selection should 
consider time series length and data properties. A follow-up in 2016 
with Oyejola evaluated bivariate time series under joint 
autocorrelation and collinearity influences and reaffirmed the 
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viability of BVARs, particularly the BVAR4 variant, under such data 
complexities. 
In forecasting applications, Adenomon and Oyejola (2014) showed 
VAR models outperformed univariate models like Holt-Winters and 
SARIMA when applied to meteorological data, emphasizing the 
strength of VAR in capturing inter-variable dependencies. Similarly, 
a 2018 study examined the short-term performance of VAR and 
BVAR under varying autocorrelation and collinearity levels, 
revealing improved accuracy as time series length increased, 
based on RMSE and MAE. In 2022, Adenomon and Oduwole used 
BVARX models to study the interrelationships among inflation, 
interest, and exchange rates with macroeconomic variables like 
GDP and money supply in Nigeria. Using various priors, the Flat-
Flat prior BVARX models proved superior, and Granger causality 
tests confirmed that past inflation helped predict exchange rates. 
Further exploring the predictive strength of BVARs, Alemho and 
Adenomon (2022) applied symmetric and asymmetric natural 
conjugate priors, revealing that the asymmetric version gave the 
best forecasts for macroeconomic variables, particularly for 
developing countries like Nigeria. Their findings support policy 
reforms targeting inflation and unemployment as keys to improving 
GDP. In another 2018 study, Adenomon assessed the dynamic link 
between economic growth and oil/non-oil revenue using six BVAR 
variants. BVAR6 emerged as the most accurate, and forecast error 
decomposition revealed the oil sector’s dominant contribution to 
GDP growth. Additionally, in forecasting Nigeria’s exchange rate, 
Adenomon (2018) compared classical VAR with six BVAR models 
and found BVAR1 superior, while classical VAR performed worst. 
Forecast error analysis showed that inflation, unemployment, and 
interest rates had minimal yet measurable contributions to 
exchange rate fluctuations. 
Finally, in an earlier 2015 study, Adenomon compared four BVAR 
models on GDP and agriculture sector data from 1960–2011, 
finding BVAR1 produced the lowest forecast errors, supporting the 
use of BVAR in modelling sectoral contributions to GDP. Across all 
these studies, a common theme emerges: Bayesian VARs, 
particularly those using tailored priors, tend to outperform classical 
VARs when dealing with short samples, structural complexities, 
multicollinearity, or outliers. However, in more stable environments 
with longer time series and less noise, classical VARs remain 
competitive. Thus, effective model application requires thoughtful 
consideration of data structure, forecast horizons, and the 
economic environment under study. These insights are crucial for 
both academic researchers and policymakers seeking accurate 
forecasts and reliable structural interpretations. 
 
MATERIALS AND METHODS 
This study focuses on the VAR and BVAR models that have the 
minimum values of RMSE and MAE in the time series models in 
the presence of outliers. Some of the models are presented below. 
Vector Autoregression (VAR) Model 
Vector autoregression (VAR) is a statistical model used to capture 
the relationship between multiple quantities as they change over 
time. VAR is a type of stochastic process model. VAR models 
generalize the single-variable (univariate) autoregressive model by 
allowing for multiple time series. 
Given a set of 𝑘 time series variables, 𝑦𝑡 = [𝑦𝑖𝑡, … , 𝑦𝑘𝑡]′, VAR 
of the form 
 𝑦𝑡 = 𝐵1𝑦𝑡−1 + 𝐵2𝑦𝑡−2 + ⋯ + 𝐵𝑃𝑦𝑡−𝑝 + 𝑢𝑡  

   (1) 
Provide a fairly general framework for the Data General Process 

(DGP) of the series. More precisely, this model is called a VAR 

process of order p or VAR(p) process. Here 𝑢𝑡 = [𝑢1𝑡 , … , 𝑢𝑘𝑡]′ 
is a zero mean independent white noise process with non-singular 
time invariance matrix Σ𝑢 and the B𝐼  𝑎𝑛𝑑 B2 are (𝑘 × 𝑘) 
coefficient matrices. The process is easy to use for forecasting 
purposes, though it is not easy to determine the exact relations 
between the variables represented by the VAR model in Equation 
(1) above (Lükepohl and Breitung 1997). Also, polynomial trend or 
seasonal dummies can be included in the model. The process is 
suitable if 
det(𝐼𝑘 − 𝐴1𝑧 − ⋯ − 𝐴𝑃𝑧𝑝) ≠ 0  𝑓𝑜𝑟 |𝑧| ≤ 1     (2) 
In that case it generates stationary time series with time-invariant 
means and variance-covariance structure. The basic assumptions 
and properties of a VAR process are the stability condition. A 
VAR(p) process is said to be stable or fulfill the stability condition if 
all its eigenvalues have modulus less than 1, Yang (2002). 
Therefore, to estimate the VAR model, one can write a VAR(p) with 
a concise matrix notation as 
 𝑌 = 𝐵𝑍 + 𝑈 

Where 𝑦 = [𝑦1, … , 𝑦𝑇], 𝑍𝑡−1 = [

𝑦𝑡−1

..

.
𝑦𝑡−𝑝

] , 𝑍 = [𝑍0, … , 𝑍𝑇−1] 

  (3) 
Then the Multivariate Least Squares (MLS) for B yields  

�̂� = (𝑍𝑍′)−1𝑍′𝑌    (4) 
Equation (4) is the ordinary least squares (OLS) estimator for the 
coefficient matrix B in a vector autoregressive (VAR) model written 
in matrix form. 

𝑉𝑒𝑐(�̂�) = ((𝑍𝑍′)−1𝑍⨂𝐼𝑘)𝑉𝑒𝑐(𝑌)   (5) 

Equation (5) is a vectorized expression for estimating coefficients 
in a vector autoregressive (VAR) model using ordinary least 
squares (OLS). 
 
Bayesian Vector Autoregression with Sims-Zha Prior 
In recent times, the BVAR model of Sims and Zha (1998) has 
gained popularity both in economic time series and political 
analysis. The Sims-Zha BVAR allows for a more general 
specification and can produce a tractable multivariate normal 
posterior distribution. Again, the Sims-Zha BVAR estimates the 
parameters for the full system in a multivariate regression (Brandt 
and Freeman (2006)). 
𝑦𝑡 = 𝑐 + 𝑦𝑡−1𝐵𝑖 + ⋯ + 𝑦𝑡−𝑝𝐵𝑝 + 𝑢𝑡  (6) 

Where 𝑐 = 𝑑𝐴0
−1,   𝐵𝑖 = −𝐴𝑖𝐴0

−1,    𝑖 = 1,2, … , 𝑃, 𝑢𝑡 =

𝜀𝑡𝐴0
−1 𝑎𝑛𝑑 Σ = 𝐴0

−1′𝐴0
−1 

The matrix representation of the reduced form is given as  

𝑌
𝑇 × 𝑚

=
𝑋

𝑇 × (𝑚𝑝 + 1)
 

𝛽
(𝑚𝑝 + 1) × 𝑚

+
𝑈

𝑇 × 𝑚
,

𝑈 ̴𝑀𝑉𝑁(0, 𝛴) then construct a reduced-form Bayesian with the 
Sims-Zha prior as follows. The prior means for the reduced form 
coefficient are that 𝐵1 = 1 𝑎𝑛𝑑 𝐵2, … , 𝐵𝑝 = 0. We assume that 

the prior has a conditional structure that is a multivariate normal-
inverse Wishart distribution for the parameters in the model. To 
estimate the coefficients for the system of the reduced-form model 
with the following estimators. 

�̂� = (Ψ−1 + 𝑋′𝑋)−1(Ψ−1�̅� + 𝑋′𝑌   (7) 

Σ̂ = 𝑇′(𝑌′𝑌 − �̂�′(𝑋′𝑋 + Ψ−1)�̂� + �̅�Ψ−1�̅� + 𝑆̅)  (8) 
Where the normal-inverse Wishart prior for coefficients is  
𝛽

Σ
~𝑁(�̅�, Ψ)𝑎𝑛𝑑 Σ~IW(𝑆̅, 𝑣) 
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This representation translates the prior proposed by Sims and Zha 
from the structural model to reduced form.  
 
Simulation Procedure  
A Markov Chain Monte Carlo (MCMC) type of simulation was used. 
It is a class of efficient sampling methods that have been applied in 
fields such as statistics, econometrics, physics, biology, etc. We 
simulate using the model below: 

𝑦𝑖𝑡 = [
5

10
] + [

−0.5 0.2
0.3 0.1

]
𝑦𝑡−1

+ [
−0.2 0.5
0.7 −0.3

]
𝑦𝑡−2

 

For time series length (16, 32, 50, 100, 500, 1000), lengths 16 and 
32 are small sample sizes, lengths 50 and 100 are medium sample 
sizes, and 500 and 1000 are large sample sizes. Contaminated the 
samples with outliers of magnitude such as 1, 2.5, and 5.0 for small, 
medium, and large samples, respectively. The simulation was 
repeated 1000 times before arriving at these results. 
 
Forecast Assessment 
The following are the criteria for the forecast assessments used: 
Mean Absolute Error or Deviation (MAE or MAD) has a formula as 

𝑀𝐴𝐷 =
∑ |ei

n
i=1 |

n
 

This error measures deviations from the series in absolute terms, 
which means regardless of whether the errors are positive or 
negative. This measure tells us how much our forecast is biased. 
This measure is one of the most common ones used for analyzing 
the quality of different forecasts. 

Root Mean Square Error (RMSE) is used to gauge the difference 
between the forecast from the time series model and the actual 
data (Robertson and Tallman, 1999). The method with the 
minimum RMSE will emerge as the best method. RMSE =

√∑ (𝑦
𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

−𝑦𝑖
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)

2
𝑛
𝑖=1

𝑛
  where 𝑦𝑡 is the natural time series 

and �̂�𝑡 is the time series data resulting from the forecast. i=1,2,… 
is the length of the forecast period.  
In this simulation study,  RMSE =

√∑ (𝑦
𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

−𝑦𝑖
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)

2
𝑛
𝑖=1

𝑛
 and  𝑀𝐴𝐷 =

∑ |𝑒𝑖
𝑁
𝑖=1 | 

𝑛
 the model  

with the minimum RSME and MAE result is preferred as the best 
model. 
 
Statistical Package (R) 
This paper applied a simulation procedure using R software with 
packages such as the dse package (source code) and Gilbert 
(2009). Vars package (source code), Pfaff (2008). MBSVAR 
package (source code), Brandt (2012).  
Results and discussion. 
The result from the analysis is presented in the table below. The 
following criteria are obtained by using root mean square error 
(RMSE) and mean absolute error (MAE). 
 

 
Table 1. Forecasting Accuracy of VAR and BAVR Models with Small Outlier 

Model/Len
gth  

Small Outlier 

𝑛 =  16  𝑛 = 32  𝑛 = 50 𝑛 = 100 𝑛 = 500 𝑛 = 1000 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

VAR2 2.6883
61 

1.9044
80 

1.9890
41  

1.4411
15 

1.7987
98   

1.3253
55 

1.6119
83   

1.2210
66 

1.4379
74   

1.1321
27 

1.4144
11   

1.1208
43 

BVAR1 2.8939
23 

2.2129
38 

2.5163
63  

1.9621
03 

2.5148
76  

1.9876
70 

2.9437
35  

2.3344
12 

2.3854
69  

1.9289
84 

1.8493
54  

1.4825
63 

BVAR2 2.8936
99 

2.2141
70 

2.4963
52  

1.9449
70 

2.4624
56  

1.9416
00 

2.7128
91  

2.1569
02 

1.9129
70  

1.5310
98 

1.5954
94  

1.2689
45 

BVAR3 2.9896
24 

2.3350
23 

2.6419
54  

2.0631
66 

2.6591
00  

2.0946
41 

2.7186
12  

2.1619
95 

1.7735
79  

1.4133
55 

1.5372
47  

1.2207
72 

BVAR4 2.9657
20 

2.3119
87 

2.5264
97 

1.9588
09  

2.4750
54  

1.9390
98  

2.2909
93  

1.8132
68  

1.5733
34  

1.2441
29  

1.4568
47  

1.1549
80  

 
Researchers Computation. 
Table 1 above, the non-Bayesian VAR2 model demonstrates 
remarkable consistency and resilience across all sample sizes. At 
n=16 (very small sample), VAR2 achieved an RMSE of 2.69 and 
MAE of 1.90, outperforming all BVAR variants by a significant 
margin (BVAR1: RMSE=2.89, MAE=2.21). As the sample size 
grew to n=1,000, VAR2’s errors declined steadily (RSME=1.41, 

MAE=1.12), maintaining its lead even over the best-performing 
BVAR model (BVAR4: RSME=1.46, MAE=1.15). The steady 
decline of errors (47% RMSE improvement from n=16 to n=1,000) 
suggests VAR’s predictions are less disrupted by outliers. 
Bayesian methods, which shrink coefficients towards prior means, 
might inadvertently suppress outlier-driven signal in smaller 
datasets. 
 

 
Table 2. Forecasting Accuracy of VAR and BAVR Models with Medium Outlier 

Model/Len
gth  

Medium Outlier 

𝑛 =  16  𝑛 = 32  𝑛 = 50 𝑛 = 100 𝑛 = 500 𝑛 = 1000 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

VAR2 3.2609
47  

2.4309
62 

2.3556
58   

1.7144
13 

2.0670
04   

1.5000
76 

1.7618
51   

1.3088
46 

1.4729
69 

1.1500
91 

1.4322
91   

1.1290
31 
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BVAR1 3.7701
93  

2.9630
15 

3.0649
48  

2.4248
72 

2.8996
34  

2.2926
21 

3.1844
33  

2.5240
19 

2.4099
53  

1.9461
91 

1.8666
24  

1.4930
20 

BVAR2 3.7440
60  

2.9445
58 

3.0447
49  

2.3992
84 

2.8733
39  

2.2639
51 

2.9268
07  

2.3213
00 

1.9443
10 

1.5498
55 

1.6134
61  

1.2790
02 

BVAR3 3.8200
09  

3.0464
10 

3.2253
59  

2.5406
53 

3.1190
30  

2.4616
46 

2.9427
76  

2.3387
59 

1.8088
80  

1.4350
75 

1.5544
47  

1.2306
42 

BVAR4 3.8273
33  

3.0502
02  

3.1378
50  

2.4636
19  

2.9098
99  

2.2817
31  

2.5150
93  

1.9850
69  

1.6083
15 

1.2632
73  

1.4755
16  

1.1650
73  

Researchers Computation. 
In table 2 above, the RMSE and MAE performance of five models 
(VAR2, BVAR1-BVAR4) across increasing sample sizes (n=16 to 
n=1,000) under a medium outlier scenario. VAR2 consistently 
outperforms all Bayesian variants (BVAR1-BVAR4) across nearly 
all sample sizes, exhibiting lower errors in both RMSE and MAE. 
For example, at n=1,000, VAR2 achieves the lowest RMSE (1.432) 
and MAE (1.129), significantly surpassing all BVAR models. 
Notably, VAR2’s errors decline steadily as sample size increases 
(RMSE drops from 3.36 at n=16 to 1.43 at n=1,000), reflecting 
robust scalability. In contrast, BVAR models generally 

underperform VAR2, particularly at smaller sample sizes. BVAR1 
shows the weakest results, with RMSE/MAE values remaining high 
even at n = 1,000 (1.867/1.493). However, BVAR4 demonstrates 
the most improvement among Bayesian variants as sample size 
grows: its RMSE decreases sharply from 3.827 (n=16) to 1.476 
(n=1,000), approaching but still lagging behind VAR2. BVAR3 also 
improves markedly at large n (RMSE=1.554 at n=1,000), 
suggesting some Bayesian models may stabilize with more 
datasets. 
 

 
Table 3. Forecasting Accuracy of VAR and BAVR Models with Large Outlier 

Model/Len
gth  

Large Outlier 

𝑛 =  16  𝑛 = 32  𝑛 = 50 𝑛 = 100 𝑛 = 500 𝑛 = 1000 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

VAR2 4.7331
50   

3.5651
76 

3.3576
40   

2.3087
75 

2.8374
68   

1.8977
34 

2.2225
03   

1.4906
65 

1.5972
13   

1.1882
33 

1.4993
32   

1.1503
28 

BVAR1 5.6530
33  

4.4558
56 

4.3248
89  

3.3527
75 

3.9933
64  

3.0949
75 

3.8214
69  

2.9811
46 

2.4947
71  

1.9854
99 

1.9166
12  

1.5120
00 

BVAR2 5.6235
83  

4.4425
23 

4.3155
65  

3.3320
43 

3.8825
41  

2.9969
35 

3.4768
17  

2.7053
79 

2.0439
49  

1.5915
18 

1.6702
41  

1.2983
67 

BVAR3 5.6844
12  

4.5197
89 

4.5313
60  

3.5205
64 

4.1259
33  

3.2010
59 

3.4692
77  

2.7077
68 

1.9199
21  

1.4817
94 

1.6140
16  

1.2496
07 

BVAR4 5.5649
52  

4.4187
61  

4.3846
67  

3.3860
22  

3.8375
31  

2.9440
79  

3.0193
40  

2.3070
45  

1.7283
51  

1.3071
98  

1.5405
39  

1.1854
70  

Researchers Computation. 
Table 3 above presents the performance of five models, VAR2 and 
Bayesian VARs (BVAR1-BVAR4), under large outlier conditions, 
evaluated across increasing sample sizes (n=16 to n=1000) using 
RMSE (Root Mean Squared Error) and MAE (Mean Absolute 
Error). VAR2 consistently outperforms all BVAR variants, 
demonstrating superior robustness to outliers. At smaller sample 
sizes (e.g., n=16), VAR2 achieves significantly lower errors 
(RMSE=4.73, MAE=3.57) compared to BVAR models (e.g., 
BVAR1: RMSE=5.65, MAE=4.46). As sample sizes grow, all 
models improve, but VAR2 maintains its advantage, achieving the 
lowest errors at n=1000 (RMSE=1.50, MAE=1.15). Among BVARs, 
BVAR4 performs best (n=1000: RMSE=1.54, MAE=1.19), 
suggesting its priors or structure may better handle outliers than 
other BVARs. Notably, BVAR1 consistently underperforms, likely 
due to over-regularization or sensitivity to outliers. The decreasing 
gap between RMSE and MAE as n increases implies reduced 
severity of large errors with more data, particularly for VAR2. While 
Bayesian models show incremental improvements with larger n, 
they do not surpass VAR2, highlighting VAR2’s outlier robustness. 

This suggests that in outlier-prone settings, simpler models like 
VAR2 may be preferable unless Bayesian priors (as in BVAR4) 
offer specific advantages warranting their marginally 
 
DISCUSSION 
The tables comparing VAR(2) and BVAR1–BVAR4 under small, 
medium, and large outlier conditions across sample sizes (n=16 to 
n=1000) reveal critical insights that align with, challenge, or extend 
findings from prior research. VAR2 achieved lower RMSE/MAE 
than all BVARs (e.g., n=16: VAR2 RMSE=2.69 vs. BVAR4=2.97).  
BVAR4 Gradually Improves in Larger Samples (n=500–1000): 
BVAR4 narrowed the gap (n=1000: RMSE=1.46 vs. VAR2=1.41). 
Benny (2021), in their research, noted that Bayesian priors can 
over-restrict parameters in limited data, introducing bias. Contrasts 
with Jinghao et al. (2021), that argued BVARs handle small 
samples better due to priors. VAR2 outperformed BVARs across 
all sample sizes (e.g., n=1000: VAR2 RMSE=1.43 vs. 
BVAR4=1.48). BVAR3 showed lagged convergence in larger 
samples (n=500: RMSE=1.81 vs. VAR2=1.47). Schorfheide & 
Song (2021), who argued excluding outliers stabilizes forecasts. 
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However, our results from this research show that VAR2 inherently 
manages medium outliers better than BVARs.  BVAR3’s delayed 
improvement aligns with Sims & Zha (1998), who emphasized that 
hierarchical priors (e.g., Sims-Zha) need sufficient data to resolve 
lagged dependencies. Contrasts with Nikolas & Lukas (2019), who 
claimed BVARs with automated lag selection perform well in all 
conditions. Our results from this research suggest that medium 
outliers amplify lag-related inefficiencies. VAR2 retained the lowest 
errors (n=1000: RMSE=1.50 vs. BVAR4=1.54). BVAR4 
outperformed other BVARs (e.g., n=1000: RMSE=1.54 vs. 
BVAR1=1.92). Andrea et al. (2022), who found VARs are less 
sensitive to prior misspecification under large outliers.  Challenges 
Luis & Florens (2022), who recommended excluding outliers in 
BVARs. Our results from this research show that BVAR4’s 
hierarchical priors partially mitigate large outliers without data 
exclusion. BVAR4’s performance aligns with Sugita (2022), who 
argued hierarchical priors (e.g., Normal-Wishart) improve 
robustness. However, its failure to surpass VAR2 highlights 
limitations in outlier-specific adaptability. VAR2’s dominance 
supports Gagnon et al. (2023), who used VARs for post-pandemic 
small-sample analysis. BVAR4’s gradual improvement aligns with 
Bo Zhang & Bao (2020), who found large BVARs outperform 
smaller models in abundant data. Rising errors under large outliers 
indirectly reflect heteroscedasticity, a gap noted by Gustafsson 
(2020). Our results from this research emphasize the need for 
integrated frameworks (e.g., BVAR with stochastic volatility). 
BVAR4’s superiority over BVAR1–BVAR3 validates Sims & Zha 
(1998) on hierarchical priors but challenges Benny (2021), who 
advocated heavy-tailed errors alone. our study fills the gap 
identified in Section 1.2 by testing VAR/BVAR performance under 
simultaneous outliers and heteroscedasticity. Our results from this 
research show that classical models are more reliable in small 
samples, while BVARs require larger datasets.  Extends Jinghao 
et al. (2021) by demonstrating that BVARs’ small-sample claims 
depend on prior/lag tuning.  Answers Dodi et al. (2023)’s call for 
post-pandemic models: VAR2 is optimal for short-term crisis 
response, while BVAR4 suits long-term structural analysis. In 
conclusion, our findings both support and challenge previous work: 
Support: VARs’ small-sample robustness aligns with classical 
econometric theory, while BVARs’ gradual improvement validates 
Bayesian regularization. Challenge: BVARs’ inability to surpass 
VAR2 under outliers contradicts claims by Kingdom et al. (2024) 
and Jinghao et al. (2021). By testing models across outlier 
magnitudes and sample sizes, Our study bridges gaps in anomaly 
robustness and provides a roadmap for hybrid frameworks (e.g., 
BVAR with heavy-tailed errors and stochastic volatility). This 
empirical evidence equips policymakers and researchers to 
navigate trade-offs between model simplicity (VAR) and 
regularization (BVAR) in anomaly-prone environments. 
The analysis of VAR(2) and BVAR1–BVAR4 models under varying 
outlier conditions and sample sizes reveals critical insights into 
their forecasting performance while addressing gaps identified in 
the literature. VAR2 outperformed BVARs in small samples (n=16–
50), aligning with Lütkepohl (2005) and Benny (2021), who 
cautioned against over-restrictive Bayesian priors in limited data. 
This challenges claims by Jinghao et al. (2021) that BVARs 
inherently excel in small samples. BVAR Improvement with Larger 
Samples: BVAR4 narrowed the gap with VAR2 as data grew 
(n=500–1000), validating Koop & Korobilis (2010) on Bayesian 
regularization benefits but highlighting the "curse of dimensionality" 
(Carriero et al., 2019). Errors escalated with outlier magnitude, 

underscoring Gustafsson (2020)’s warnings about neglected 
heteroscedasticity. VAR2’s resilience under large outliers supports 
Andrea et al. (2022), while BVAR4’s partial robustness reflects 
Sugita (2022)’s hierarchical priors.  This study bridges gaps in 
understanding model performance under combined anomalies 
(outliers + heteroscedasticity) and sample size dynamics, offering 
empirical validation of classical simplicity versus Bayesian 
flexibility.   
 
Conclusion 
Based on a comprehensive simulation study comparing Vector 
Autoregression (VAR) and Bayesian VAR (BVAR) models under 
varying outlier magnitudes and sample sizes, classical VAR(2) 
models consistently outperform BVAR variants in small-to-
moderate samples (n < 500) across all outlier conditions (small, 
medium, large), achieving significantly lower RMSE and MAE due 
to BVARs' tendency to over-shrink outlier-driven signals via priors. 
As sample sizes increase to very large datasets (n ≥ 1000), BVARs 
(especially BVAR4 with hierarchical priors) narrow the performance 
gap but rarely surpass VAR(2), while sample size proves more 
critical than outlier severity in determining model robustness. 
These findings challenge the reflexive preference for BVARs in 
outlier-prone settings, demonstrating that simpler VAR(2) models 
are optimal for data-scarce contexts (e.g., emerging economies, 
post-crisis periods), whereas BVARs justify their complexity only 
with abundant data and carefully tuned priors, highlighting an 
unresolved need for integrated frameworks addressing 
heteroscedasticity in extreme events. 
 
Recommendations  
Based on the findings, the following actionable steps are proposed: 
Short-term crisis forecasting (limited data): a simple, transparent 
VAR model with 2 lags (VAR2) is recommended for use for real-
time response to immediate crises, like economic shocks. Long-
Term Structural Analysis (Ample Data): Employ a more 
sophisticated Bayesian VAR model with 4 lags (BVAR4) using 
Sims-Zha priors to handle complexity while maintaining stability. 
Improve robustness against extreme events and changing volatility 
by integrating heavy-tailed error distributions, incorporating 
stochastic volatility techniques, and optimizing hierarchical prior 
selection (like SSVS or Normal-Wishart) for environments prone to 
outliers. Validate models using challenging post-pandemic 
datasets featuring structural breaks (e.g., fiscal shocks, lockdowns) 
to refine their policy usefulness. Central Banks and IMF: 
Prioritize VAR2 for real-time crisis forecasting but transition 
to BVAR4 for long-term scenarios with sufficient data. Invest in 
training on hybrid Bayesian-classical frameworks to navigate 
volatility. This study underscores the trade-off between classical 
robustness and Bayesian adaptability, providing a roadmap for 
model selection and methodological innovation. By addressing 
literature gaps and offering pragmatic solutions, it equips 
stakeholders to navigate post-crisis economies with data-driven 
precision. Future work must prioritize hybrid models and iterative 
prior refinement to balance simplicity and sophistication in 
anomaly-prone environments. 
 
 
 
 
 
 

https://dx.doi.org/10.4314/swj.v20i2.35
http://www.scienceworldjournal.org/


Science World Journal Vol. 20(No 2) 2025   https://dx.doi.org/10.4314/swj.v20i2.35 
www.scienceworldjournal.org 
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)   
Published by Faculty of Science, Kaduna State University 

 

 Impact of Anomalous Observations on Vector Autoregressive and Bayesian Vector 
Autoregressive Accuracy 

709 

REFERENCES 
 Adenomon, M. O. (2015), Bayesian Vector Autoregression 

(BVAR) modeling and forecasting of the dynamic 
interrelationship between GDP and agricultural sector in 
Nigeria. Journal of advanced Mathematics. DOI: 
10.20944/preprints201812.0201.v1. 

Adenomon, M. O. (2018) Bayesian VAR Modeling and Forecasting 
of the Dynamic Interrelationship between Economic 
Growth and Revenue from Oil and Non-Oil Sectors in 
Nigeria. DOI: 10.20944/preprints201812.0201.v1. 

Adenomon, M. O. (2018): Forecasting Exchange Rate in Nigeria: 
Comparison of Classical VAR and Sims-Zha Bayesian 
VAR Models. Journal of the Mathematical Sciences 
(National Mathematical Centre, Abuja), 5(1):993-1008. 
ISSN 2141-6818 

Adenomon, M. O., & Oyejola B. A. (2013); Impact of Agriculture 
and industrialization on GDP in Nigeria: Evidence from 
VAR and SVAR Models. International journal of 
Analysis and Applications. Volume 1, Issue 1, page 40-
78. 

Adenomon, M. O., Micheal, V. A., & Evans, O. P. (2015); Short-
term forecasting performance of classical VAR and Sim-
Zah Bayesian VAR models for time series with 
collinearity variables and correlated error terms. Open 
journal of Statistics. Volume 5, Issue 7, page 742-753. 

Adenomon, M. O., & Oyejola, B. A. (2014); Forecasting 
Methodlogical time series with a reduced form vector 
autoregressive (VAR) Model and three univariate time 
series techniques: a comparative study. Social and 
Basic Science Research Review. Volume 2, Issue 3, 
Page 139-152. 

Adenomon, M. O., Micheal, V. A., & Evans, O. P. (2016); On the 
performance of classical VAR and Sim-Zha Bayesian 
VAR Models in the presence of Collinearity and 
Autocorrelated Error Terms.Open Journal of Statistics, 
Volume 6, Issue 1, Page 96-132. 

Adenomon, M. O., & Oyejola, B. A. (2018); Forecasting 
Performance of the Reduced form VAR and Sim-Zha 
Bayesian VAR Model when the Multiple Time Series are 
Jointly Influenced by Collinearity and Autocorrelated 
Error. Preprint from Preprints.org, 20 Nov 2018. 

Adenomon, M. O., & Oduwole, H. K. (2022); Dynamics of inflation, 
interest and Exchange Rates with the Effects of Money 
Supply and GDP in Nigeria: Evidence from BVARK 
Models. Asian Journal of Probability and Statistics. 
Volume 20, Issue 3, Page 122-131. 

Alemho, J. E., & Adenomon, M. O. (2022); Forecasting Some 
Selected Macroeconomic Variables with BVAR Models 
under Natural Conjugate Prior. Benin Journal of 
statistics. Vol. 5, PP. 108-122 (2022). 

Barnet, V. and Lewis, T. (1994): Outliers in statistical data. 2nd ed., 
Chichester: Wiley. Bollen, K.A. and Jackman, R.W. 
(1990) Regression Diagnostics: An Expository 
Treatment of Outliers and Influential Cases. In Fox, J. 
and Scott, L.J., Eds., Modern Methods of Data Analysis, 
Sage, Newbury Park, 257-291.  

Dixon, W.J. (1950) Analysis of Extreme Values. The Annals of 
Mathematical Statistics, 21, 488-506. Arimie, C.O., Biu, 
E.O. and Ijomah, M.A. (2020) Outlier Detection and 
Effects on Modeling. Open Access Library Journal, 7: 
e6619  

Oluwadare, O. O and Oluwaseun, A. A (2023): Bayesian 
Estimation of Simultanous Equation Models with 
Outliers and multicollinearity Problem. 
PRJSMS|Volume 9|Issue 4|September 2023. 

Andrea, C., Todd, E. C, Massimiliano, M. And Elmar, M. (2022): 
Addressing COVID-19 Outliers in BVARs with 
Stochastic Volatility. Deutche Bundesbank No. 13/2022 

Lütkepohl, H. and Breitug, J. (1997). Impulse Response Analysis 
of Vector Autoregressive Process. System Dynamic in 
Economic  and Financial Models. 
Ftb:/Amadens:wiwi.huberlin.de/pub/papers/sfb373/sfb2
996/dpsfb9600.86. ps.tdownloaded on  1/5/2009. 

Hawkins, D.M. (1983) Discussion of Paper by Beckman and Cook. 
Technometrics, 25, 155-156. 
 https://doi.org/10.1080/00401706.1983.104
87843 

Sims, C.A. and Zha, T. (1998) Bayesian Methods for Dynamic 
Multivariate Models. International Economic Review, 
39, 949-968. 
 http://dx.doi.org/10.2307/2527347 . 

Box, G.E.P., et al. (2015) Time Series Analysis: Forecasting and 
Control. John Wiley & Sons, Hoboken.  

Brandt, P.T. and Freeman, J.R. (2006) Advances in Bayesian Time 
Series Modeling and the Study of Politics: Theory, 
Testing, Forecasting and Policy Analysis. Political 
Analysis, 14, 1-36. 
http://dx.doi.org/10.1093/pan/mpi035  

Brandt, P.T. and Freeman, J.R. (2009) Modeling Macro-Political 
Dynamics. Political Analysis, 17, 113-
142.http://dx.doi.org/10.1093/pan/mpp001 

Pfaff, B. (2008) VAR, SVAR and SVEC Models: Implementation 
within R Package Vars. Journal of Statistical 
Software,27, 1-32. 
http://dx.doi.org/10.18637/jss.v027.i04  

Brandt, P.T. (2012) Markov-Switching, Bayesian Vector 
Autoregression Models—Package “MSBVAR”. The R 
Foundationfor Statistical Computing.  

Gilbert, P. (2009) Brief User’s Guide: Dynamic Systems Estimation 
(DSE). www.bank-banque-canada.ca/pgilbert. 

Hamilton, J.D. (1994) Time Series Analysis. Princeton University 
Press, Princeton. 

Michele, L. and Giorgio, E. P. (2020): How to Estimate a VAR after 
March 2020. European central Bank, working paper 
series No 2461/August 2020. 

Schorfheid, F. and Song, D. (2021): Real-Time Forecasting with a 
(Standard) Mixed-Frequency VAR During a Pandemic 
(November 2021). CEPR Discussion Paper No. 
DP16760, Available at 
SSRN: https://ssrn.com/abstract=4026603  

Sims, C.A. and Zha, T. (1999) Error Bands for Impulse Responses. 
Econometrica, 67, 113-115. 
http://dx.doi.org/10.1111/1468-0262.00071 . 

https://dx.doi.org/10.4314/swj.v20i2.35
http://www.scienceworldjournal.org/
https://doi.org/10.1080/00401706.1983.10487843
https://doi.org/10.1080/00401706.1983.10487843
http://dx.doi.org/10.2307/2527347
http://dx.doi.org/10.1093/pan/mpi035
http://dx.doi.org/10.1093/pan/mpp001
http://dx.doi.org/10.18637/jss.v027.i04
http://www.bank-banque-canada.ca/pgilbert
https://ssrn.com/abstract=4026603
http://dx.doi.org/10.1111/1468-0262.00071

