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ABSTRACT 
The menace of cancer, which has sent many to untimely deaths 
globally in the 21st century, lives with us today. This study 
compared the reported death rates from five selected West African 
countries over nine different types of cancer, excluding all sexually 
related types. The data was acquired from Kaggle.com, covering 
the period from 1990 to 2019, and contained various cancer types; 
however, the study considered only nine different types from the 
five selected West African countries. The Multivariate Analysis of 
Variance (MANOVA) was adopted for the analysis and comparison 
of cancer-variant mortality rates. The results showed a significant 
difference in the mean vectors of the cancer-variant mortality rates, 
with Côte d’Ivoire consistently higher and Nigeria consistently lower 
(p < 0.05). It was therefore concluded that cancer-variant mortality 
rates in West African countries, as low-income countries, are still 
moderate and that efforts need to be made to reverse the rise 
observed in certain variants while improving on policies to keep 
those declining on the drop.  
 
Keywords: Cancer-variants, MANOVA, Mortality rates, Pillai’s test, 
West Africa 
 
INTRODUCTION 
Cancer has been reported as the leading cause of death globally 
and amongst the top three drivers of the increase in deaths from 
non-communicable diseases, which accounts for an estimated 
37% of all deaths in Sub-Saharan Africa (SSA) (Mutebi, 2023; 
WHO, 2022). Cancer, according to the National Cancer Institute 
(2021), is an ailment in which “some of the body’s cells grow 
uncontrollably and spread to other parts of the body”. The World 
Health Organisation identified lung, prostate, colorectal, stomach, 
and liver cancer as the most common in men, and breast, 
colorectal, lung, cervical and thyroid as most common among 
women (WHO, 2022). Researchers have noted that “cancer 
fatalism” makes many cancer patients believe that the diagnosis is 
a sure death sentence and that treatment is futile, which has led to 
many deaths from different cancer infections even when care and 
treatment have improved (Mutebi, 2023; Duru & Topatan, 2023; 
Salisu et al., 2022; Powe & Finnie, 2003). Fatalism was defined by 
Keller et al. (2021) as an “emotional state of gloom, hopelessness, 
and helplessness concerning cancer outcomes. Fatalism is driven 
by cultural and social beliefs and has raised the rates of death from 
cancer in Africa, coupled with low health access, out-of-pocket 
treatment and general poverty (Alberto et al., 2023; Kim & Lwin, 
2021). 
The implementation of multivariate models in the study of health-
related phenomena has persisted because of the complex nature 

of human health and its interrelatedness within the environment. 
Kandula et al. (2023) used a hybrid classification model (a voting 
classifier) to study personalised cancer with gene, variant, and text 
features. Hancock (2006) employed the multivariate consensus 
tree, a tree-based clustering for mixed data types on thyroids. Mo 
et al. (2021) used a comprehensive transcriptomic analysis on an 
EMT-related gene signature in colorectal cancer. Yanai et al. 
(1979) employed factor analysis to analyse cancer mortalities in 24 
selected countries from Africa, Europe, America, Australia, and 
Asia. Rubio et al. (2023) used exploratory analysis and modelling 
to study the geospatial distribution of breast cancer mortality rate 
in Colombia, and also used logistic regression, K-nearest 
neighbour, support vector machines, naïve Bayes, decision trees, 
and random and rotation forest, multivariate methods, to analyse 
and compare Wisconsin breast cancer detection and diagnostics. 
This study aims to compare the proportion of deaths from cancer 
variants in selected West African countries that share a common 
dip into the Atlantic Ocean using the Multivariate Analysis of 
Variance (MANOVA). The specific objectives included obtaining 
the mean vector and variance-covariance matrix of cancer-variants 
mortality rates (CVMR) for the countries under study, and 
comparing the mean vectors using the multivariate analysis of 
variance of the cancer-variants mortality rates. 
 
METHODOLOGY 
The data used for the study were mortality proportions of 30 years 
(1990 – 2019) for 9 different cancer types (Bladder, Kidney, 
Stomach, Esophageal, Tracheal, bronchus and lung (TBL), Colon 
and rectum, Gallbladder and biliary tract, Liver, and Brain and 
central nervous system) collected from 5 west African countries 
(Cote d’Ivoire, Ghana, Liberia, Nigeria and Senegal) who had the 
foot in the Atlantic Ocean. 
 
Model Specifications 
The Multivariate analysis of variance (MANOVA) is an extension of 
the univariate Analysis of variance for inferences when the 
population groups are more than two (𝑘 > 2). The Multivariate 
Analysis of variance has as assumptions that the observations are 
independent of each other, the dependent variables are 
multivariate normally distributed, and the population covariance 
matrix is equal, that is, homogeneity of variance.  
The multivariate linear model with p >1 response variables is an 
extension of the univariate model with added columns to cater for 
the dependent variables and additional regression coefficients 
associated with each of them, and additional columns for the 
random error associated with each additional response variable. 
The Multivariate model, according to Haase (2012), is specified as: 
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𝒀(𝑛 ×𝑝)

= 𝑿(𝑛 ×(𝑞+1))𝑩((𝑛−1) ×𝑝)

+ 𝑬(𝑛 ×𝑝)                                                                    (1) 

Where Y is an 𝑛 × 𝑝 matrix of response variables, B is an (𝑛 −
1) × 𝑝 matrix of regression coefficients, X is an 𝑛 × (𝑞 − 1) 

matrix of predictor variables, and E is an 𝑛 × 𝑝 matrix of the 
disturbances or random errors. It is noteworthy that while the 
design matrix X is comparable to the univariate case, the 
multiplicity of the response variables, estimates of the parameters, 
and the disturbances that characterise the multivariate linear model 
need to be developed. Jaccard & Jacoby (2010) identified the 
choice of reliable and valid criterion and predictor variables hinged 
on the theoretical description of the hypothesised relationships 
(concepts, magnitude and direction) and specified models 
consistent with theories as building blocks for modelling. 
Specifying the multivariate linear model commences with defining 
the four matrices of Eqn. 1 above with p > 1. The dependent 

variable 𝒀(𝑛 ×𝑝) is an n x p matrix given as; 

𝒀(𝑛 ×𝑝)

=  

[
 
 
 
𝑌11 𝑌12

𝑌21 𝑌22

… 𝑌1𝑝

… 𝑌2𝑝

⋮ ⋮
𝑌𝑛1 𝑌𝑛2

⋱ ⋮
… 𝑌𝑛𝑝]

 
 
 

                                             (2) 

Also, the explanatory variables of the model, which make up the 
design matrix 𝑿(𝑛 ×(𝑞+1)), consist of the q predictor measures 

(𝑋1, 𝑋2, … , 𝑋𝑞) and the unit column vector 𝑋0 = 1 used for 

estimating the model intercept. The design matrix has a general 
form of: 

𝑿(𝑛 ×(𝑛±1))

= 

[
 
 
 
1 𝑋11 𝑋12

1 𝑋21 𝑋22

… 𝑋1𝑝

… 𝑋2𝑝

⋮ ⋮ ⋮
1 𝑋𝑛1 𝑋𝑛2

⋱ ⋮
… 𝑋𝑛𝑝]

 
 
 

                                 (3) 

In the matrix of model parameters B in equation 1, the multiple 
dependent variables are accompanied by multiple columns of B to 
accommodate all of the Y-X relationships with an order of q + 1. 
The rows of B correspond to the predictor variables 
(𝑋0, 𝑋1, 𝑋2, … , 𝑋𝑞)  and the columns represent the response 

variables (𝑌1, 𝑌2, … , 𝑌𝑝) and the model is given as: 

𝑩((𝑞±1) ×𝑝)

=  

[
 
 
 
 
 
𝛽01 𝑌02

𝛽11 𝑌12

… 𝛽0𝑝

… 𝛽1𝑝

𝛽21 𝛽22

⋮
𝛽𝑞1

⋮
𝛽𝑞2

… 𝛽2𝑝

⋱
…

⋮
𝛽𝑞𝑝]

 
 
 
 
 

                                   (4) 

The matrix product 𝑿(𝑛 ×(𝑛±1))𝑩((𝑞+1) ×𝑝) in equation 1 

conforms multiplicatively while the order of 𝑿𝑩(𝑛 ×𝑝) is 

determined by X rows and B columns and given as: 
𝑿𝑩(𝑛 ×𝑝)

=  

[
 
 
 
1 𝑋11 𝑋12

1 𝑋21 𝑋22

… 𝑋1𝑝

… 𝑋2𝑝

⋮ ⋮ ⋮
1 𝑋𝑛1 𝑋𝑛2

⋱ ⋮
… 𝑋𝑛𝑝]

 
 
 

 

[
 
 
 
 
 
𝛽01 𝑌02

𝛽11 𝑌12

… 𝛽0𝑝

… 𝛽1𝑝

𝛽21 𝛽22

⋮
𝛽𝑞1

⋮
𝛽𝑞2

… 𝛽2𝑝

⋱
…

⋮
𝛽𝑞𝑝]

 
 
 
 
 

      (5) 

Using the additive equality, equations (2) to (5) yield: 

[
 
 
 
𝑌11 𝑌12

𝑌21 𝑌22

… 𝑌1𝑝

… 𝑌2𝑝

⋮ ⋮
𝑌𝑛1 𝑌𝑛2

⋱ ⋮
… 𝑌𝑛𝑝]

 
 
 

=

[
 
 
 
1 𝑋11 𝑋12

1 𝑋21 𝑋22

… 𝑋1𝑝

… 𝑋2𝑝

⋮ ⋮ ⋮
1 𝑋𝑛1 𝑋𝑛2

⋱ ⋮
… 𝑋𝑛𝑝]

 
 
 

[
 
 
 
 
 
𝛽01 𝑌02

𝛽11 𝑌12

… 𝛽0𝑝

… 𝛽1𝑝

𝛽21 𝛽22

⋮
𝛽𝑞1

⋮
𝛽𝑞2

… 𝛽2𝑝

⋱
…

⋮
𝛽𝑞𝑝]

 
 
 
 
 

± [

𝜀11 𝜀12

𝜀21 𝜀22

… 𝜀1𝑝

… 𝜀2𝑝

⋮ ⋮
𝜀𝑛1 𝜀𝑛2

⋱ ⋮
… 𝜀𝑛𝑝

]         (6) 

Which is equivalent to equation 1 and reveals that 𝑿𝑩(𝑛 ×𝑝) 

conforms to the order of 𝑬(𝑛 ×𝑝)  which satisfies the order of 

𝒀(𝑛 ×𝑝). 

MANOVA Computations 
The multivariate model null hypothesis of equality of means-tested, 
according to Johnson & Wichern (2014), is given as 

𝐻0: 𝜏1 = 𝜏2 = ⋯ = 𝜏𝑝 = ∑𝑛𝑙𝜏𝑙

𝑝

𝑙=1

= 0                        (7) 

The sums of squares and cross-products are expressed as: 

∑∑(𝑥𝑙𝑗 − 𝑥̅)(𝑥𝑙𝑗 − 𝑥̅)′

𝑛𝑙

𝑗=1

𝑝

𝑙=1

= ∑𝑛𝑙(𝑥̅𝑙 − 𝑥̅)(𝑥̅𝑙 − 𝑥̅)′

𝑝

𝑙=1

+ ∑∑(𝑥𝑙𝑗 − 𝑥̅𝑙)(𝑥𝑙𝑗 − 𝑥̅𝑙)′

𝑛𝑙

𝑗=1

𝑝

𝑙=1

    (8) 

(
𝑡𝑜𝑡𝑎𝑙 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑) 𝑠𝑢𝑚
𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑎𝑛𝑑 𝑐𝑟𝑜𝑠𝑠

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
)    

=    (
𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 (𝑩𝑒𝑡𝑤𝑒𝑒𝑛) 𝑠𝑢𝑚

𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑎𝑛𝑑 𝑐𝑟𝑜𝑠𝑠
𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

)     

+ (
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 (𝑾𝑖𝑡ℎ𝑖𝑛) 𝑠𝑢𝑚
𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑎𝑛𝑑 𝑐𝑟𝑜𝑠𝑠

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
) 

Where the within sum of squares and cross products matrix is 
written as 

𝑾 = ∑∑(𝑥𝑙𝑗 − 𝑥̅𝑙)(𝑥𝑙𝑗 − 𝑥̅𝑙)′

𝑛𝑙

𝑗=1

𝑝

𝑙=1

= (𝑛1 − 1)𝑺1 ± (𝑛2 − 1)𝑺2 ± ⋯

± (𝑛𝑝 − 1)𝑺𝑝                      (9) 

Where 𝑺𝑙 is the sample covariance matrix for the lth sample. 
The between sums of squares and cross product is equally 
expressed as 

𝑩 =  ∑𝑛𝑙(𝑥̅𝑙 − 𝑥̅)(𝑥̅𝑙 − 𝑥̅)′

𝑝

𝑙=1

                                       (10) 

 
The multivariate computations that lead to the test statistic are 
summarised in the MANOVA Table 1. 
 

https://dx.doi.org/10.4314/swj.v20i3.15
http://www.scienceworldjournal.org/


Science World Journal Vol. 20(No 3) 2025   https://dx.doi.org/10.4314/swj.v20i3.15 
www.scienceworldjournal.org 
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)   
Published by Faculty of Science, Kaduna State University 

 

 Multivariate Analysis of Variance Application to Cancer-Variant Mortality 
Rates in Selected West African Countries 

1030 

Table 1: MANOVA table for comparing Population Mean Vectors 

Source of 
variation 

Matrix of the sum of 
squares and cross products 
(SSP) 

Degrees of 
freedom (df) 

Treatment 𝑩

= ∑𝑛𝑙(𝑥̅𝑙 − 𝑥̅)(𝑥̅𝑙

𝑝

𝑙=1

− 𝑥̅)′ 

𝑝 − 1 

Residual 
(Error) 

𝑾

= ∑∑(𝑥𝑙𝑗 − 𝑥̅𝑙)(𝑥𝑙𝑗

𝑛𝑙

𝑗=1

𝑝

𝑙=1

− 𝑥̅𝑙)′ 

∑𝑛𝑙

𝑝

𝑙=1

− 𝑝 

Total 
(corrected for 
the mean)  

𝑩 ± 𝑾

= ∑∑(𝑥𝑙𝑗 − 𝑥̅)(𝑥𝑙𝑗

𝑛𝑙

𝑗=1

𝑝

𝑙=1

− 𝑥̅)′ 

∑𝑛𝑙

𝑝

𝑙=1

− 1 

Source: Johnson & Wichern (2014)  
 
Multivariate Statistical tests 
The MANOVA model with k levels of independent variables and p 
number of dependent variables has several tests which are stated 
in terms of between-group (B) and within-group (W) variances 
which depict matrices of sums of squares of Y and their cross-
products (that is, the variances and covariances matrices that are 
not divided by the b and w (where w > b) degrees of freedom (df). 
These are tested against the F-distributions for significance. 
Significant results imply differences among the groups on 
dependent variables taken together. 
 
Wilks’ Lambda 
The Wilks’ Lambda measures the ratio of the mean square within 
to the mean square total. 

𝚲 = 
|𝑾|

|𝑩 ±  𝑾|
=

|𝑾|

|𝑻|
                                      (11) 

Mertler & Reinhart (2017) observed that Wilks’ 𝚲 is an “inverse 
criterion”, implying that the treatment effects or group is 
significantly different when the Lambda statistic is smaller. 
The effect size of the treatments or groups is computed with the eta 

squared (𝜼𝟐), which is the variance-covariance accounted for by 
the best combination of the multiple dependent variables (Hahs-
Vaughn, 2017; Tabachnick & Fidell, 2019) and is computed as: 

𝜼𝟐 = 𝟏 −  𝚲                                            (12) 
The F-distribution approximation with the determined significance 
levels is given as 

𝑭𝒑𝒃,𝒇𝒕−𝒘 = 
(𝑓𝑡 − 𝑐)(1 − Λ1/𝑡)

phΛ1/𝑡
                          (13) 

where 

𝑓 = 𝑤 −
1

2
(𝑝 − 𝑏 ± 1)  

𝑐 =
1

2
𝑝𝑏 − 2  

𝑡 =  {√
𝑝2𝑏2−4

𝑝2+ 𝑏2−5
,         𝑖𝑓 𝑝2 + 𝑏2 − 5 > 0 

1                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   

 
The approximation is exact if and only if p or b ≥ 2. 
 
Lawley - Hotelling’s Trace 

Hotelling’s Trace or Lawley-Hotelling trace is a generalisation of 
Hotelling's T2, applied to k > 2 groups. Trace originates from the 
matrix function that sums the diagonals of the matrix, that is, the 
sum of the variances in the variance-covariance matrix. It is given 
as: 

𝑇2

𝑁 − 𝑘
𝑜𝑟 𝑡𝑟𝑎𝑐𝑒(𝑾−1𝑩)                                              (14) 

where N is the total sample size, k is the number of groups, B is 
the matrix of the sum of squares cross-products for the hypothesis 
(explained), and W is the matrix sum of squares cross-products of 
errors. 
The F-distribution approximation with the determined significance 
levels is given as 

𝐹𝑎,𝑖  =  
𝑇𝑐

2

𝑔𝑤
                                             (15) 

where 
𝑎 = 𝑝𝑏                                                          (16) 

𝑖 =  4 +
𝑎 + 2

𝐷 − 1
                                                     (17) 

𝑔 =  
𝑎(𝑖 − 2)

𝑖(𝑤 − 𝑝 − 1)
                                          (18) 

𝐷 = 
(𝑤 + 𝑏 − 𝑝 − 1)(𝑤 − 1)

(𝑤 − 𝑝 − 3)(𝑤 − 𝑝)
                                     (19) 

Where D defines the dimensionality or number of variables in the 
multivariate problem, a and b are the parameters, which relate to 
the number of degrees of freedom of complex Wishart distributions, 
g is the degree of freedom for the number of looks derived from the 
data, and i is the index of individual observations.   
 
Pillai’s Trace 
The Pillai’s trace is given as: 

𝑉(𝑠) = 𝑡𝑟𝑎𝑐𝑒[𝑩(𝑩 + 𝑾)−1]                                               (20) 
The F-distribution approximation with the determined significance 
levels is given as 

𝐹𝑠(2𝑚+𝑠+1),2𝑛±𝑠±1)

= 
(2𝑛 + 𝑠 + 1)𝑉(𝑠)

(2𝑚 + 𝑠 + 1)(𝑠 − 𝑉(𝑠))
                                     (21) 

where 
𝑠 = min(𝑝, 𝑏)                                                                   (22) 

𝑚
= 0.5 (|𝑝 − 𝑏|
− 1)                                                                        (23) 

𝑛
= 0.5 (𝑤 − 𝑝
− 1)                                                                            (24) 

 
Roy's Largest Root 
Roy's largest root or Roy's greatest root, 𝜑𝑚𝑎𝑥 , is the largest 

eigenvalue of the matrix 𝑾−1𝑩 

𝜑𝑚𝑎𝑥 = max(𝜑𝑖)                                                               (25) 

𝜑𝑖 =  𝑾−1𝑩                                                                      (26) 
The F-distribution approximation with the determined significance 
levels is given as 

𝐹(2𝑣1±2),(2𝑣2±2) = 
2𝑣2 ± 2

2𝑣1 ± 2
𝜑𝑚𝑎𝑥                                (27) 

where 
𝑠 = min(𝑝, 𝑏)                                                          (28) 

𝑣1 = 𝑚 in equation (23) 

𝑣2 = 𝑛 in equation (24)  
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The Pillai's Trace, Wilks' Lambda, Hotelling’s Trace, and Roy’s 
largest root are all equal when k = 2. While Roy's largest root is too 
probable to yield Type I errors, Wilks' lambda and Hotelling's trace 
are sensitive to the violations of homogeneity of covariances with 
small samples, and Pillai's trace is recommended for general use. 
Box’s M test of equality of covariances is used in multivariate 
analysis to test whether the covariance matrices of the dependent 
variables are equal across the groups formed by the independent 
variables.  
The data collected from 1990 – 2019 for Bladder, Kidney, Stomach, 
Oesophagal, Tracheal, bronchus, and lung (TBL), Colon and 
rectum, Gallbladder and biliary tract (GBT), Liver and Brain and 
central nervous system (BCNS) cancers sourced from 
data.worldbank.org/database. The data collected were analysed 
with Multivariate Analysis of Variance, Univariate Analysis of 
Variance and the post hoc test was by the Duncan Multiple Range 
Test (DMRT) (Midway et a., 2020), with the aid of Statistical 
Software for Social Sciences (SPSS 27.0) and R. 
 
RESULTS 
The results include tables and Multivariate statistics computed from 

the cancer variants' mortality rates.  
 
Table 2: Box’s M test of equality of Covariances for CVMR 

Box's Test of Equality of Covariance Matrices 

Box's M 3252.149 

F 15.639 

df1 180 

df2 37801.798 

Sig. .000 

Tests the null hypothesis that the observed covariance matrices 
of z, the dependent variables, are equal across groups. 

 
The Box’s M test in Table 2 gave a χ2 of 3252.149, which is 
significant (p < 0.05), implying that the null hypothesis is rejected 
and the assumption of equal covariance across the groups (cancer 
variants) is violated. Hence, the use of Wilks’ statistic is misleading, 
leaving us with the more robust Pillai’s Trace test statistic, which is 
more robust to the violation of the assumption. 
 

 
Table 3: Multivariate Tests of the CVMR 

Effect Value F Hypothesis df Error df Sig. Partial Eta Squared 

Intercept Pillai's Trace 1.000 25859.558 9.000 108.000 <.000 1.000 

Wilks' Lambda 4.64E-4 25859.558 9.000 108.000 <.000 1.000 

Hotelling's Trace 2154.963 25859.558 9.000 108.000 <.000 1.000 

Roy's Largest Root 2154.963 25859.558 9.000 108.000 <.000 1.000 

Country Pillai's Trace 3.890 437.348 36.000 444.000 .000 .973 

Wilks' Lambda 3.799E-9 1982.404 36.000 406.463 .000 .992 

Hotelling's Trace 1784.279 5278.491 36.000 426.000 .000 .998 

Roy's Largest Root 1266.306 15617.779 9.000 111.000 <.000 .999 

Year Pillai's Trace 2.675 1.692 261.000 1044.000 <.000 .297 

Wilks' Lambda .001 4.236 261.000 952.150 <.000 .522 

Hotelling's Trace 48.263 19.642 261.000 956.000 <.000 .843 

Roy's Largest Root 41.943 167.772 29.000 116.000 <.000 .977 

Table 3 shows the multivariate tests where each statistic tests the 
hypothesis that the mean vectors of the cancer-variants mortality 
rates (CVMR) differ across the countries and over the years. The 
Pillai’s Trace with a value of 3.890 means that almost 96.11% of 
the variance in the combination of all the cancer variants' mortality 
rates is explained by the country differences, and these differences 
are significant (p < 0.05), and this is in agreement with other 
statistics for the selected countries. Also, Pillai’s Trace with a value 
of 2.675 means that almost 97.425% of the variance in the 

combination of all the cancer variants' mortality rates is explained 
by the year differences, and these differences are significant (p < 
0.05), and this is in agreement with other statistics for the selected 
countries. 
The Partial Eta Squared (η2) of 0.973 shows that 97.3% of the 
variance in all the cancer variant mortality rates was relatively 
explained by the countries, while 29.7% was relatively explained by 
the year. 
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Table 4: Mean ± Standard deviation of the cancer mortality rates (per 100,000) of some West African Countries 

Cancer-Variants CIV GHA LIB NGA SEN F-Statistics K-S (p) 

Bladder cancer 3.79 ± 0.61a 3.16 ± 0.36d 3.57 ± 0.63b 1.16 ± 0.08e 3.39 ± 0.42c 2533.986 
(<0.001) 

0.180 (<0.001) 

Kidney cancer 0.98 ± 0.06a 0.95 ± 0.06b 0.77 ± 0.11d 0.74 ± 0.08e 0.83 ± 0.07c 693.036 
(<0.001) 

0.084 (<0.001) 

Stomach cancer 17.28 ± 
1.27a 

10.16 ± 
1.23d 

13.99 ± 
1.21c 

4.93 ± 0.18e 14.50 ± 
1.05b 

2605.425 
(<0.001) 

0.145 (<0.001) 

Esophageal cancer 4.94 ± 0.47a 3.46 ± 0.17d 4.39 ± 0.67b 1.03 ± 0.05e 4.20 ± 0.59c 1182.90 
(<0.001) 

0.190 (<0.001) 

TBL cancer 13.55 ± 
0.36a 

8.91 ± 0.27d 9.49 ± 0.69c 7.74 ± 0.71e 11.84 ± 
0.99b 

851.99 (<0.001) 0.152 (<0.001) 

Colon and rectum cancer 9.36 ± 0.22a 7.51 ± 0.78c 6.16 ± 0.55d 7.34 ± 0.99c 7.82 ± 0.50b 475.73 (<0.001) 0.097 (<0.001) 

Gallbladder and biliary 
tract cancer 

1.40 ± 0.15a 1.29 ± 0.10b 1.24 ± 0.15c 0.82 ± 0.03d 1.26 ± 0.11bc 2331.73 
(<0.001) 

0.173 (<0.001) 

Liver cancer 7.07 ± 1.59a 6.43 ± 0.35b 6.30 ± 0.76b 3.62 ± 0.06c 2.26 ± 0.08d 681.422 
(<0.001) 

0.151 (<0.001) 

Brain and CNS cancer 1.19 ± 0.19c 2.44 ± 0.07a 1.04 ± 0.15d 1.54 ± 0.12b 1.07 ± 0.22d 2515.325 
(<0.001) 

0.177 (<0.001) 

Countries with the same superscripts across each cancer variant are not significantly different at 5%. 
 
Having shown that the cancer variants' mortality rates differ 
significantly across the countries in Table 3, univariate Analysis of 
Variance was conducted for the cancer variants. Table 4 shows the 
mean and standard deviation of the cancer mortality rates for the 
different types of cancer recorded in the selected West African 
Countries and the univariate Analysis of Variance for each cancer 
variant. The Table 4 show that Cote d’Ivoire has the highest 
mortality rate of 3.79 (sd = 0.61) for Bladder cancer, while Nigeria 
has the lowest mortality rate of 1.16 (sd = 0.08), and the Bladder 
cancer mortality rates across the five West African countries are 
significantly different from each other (p < 0.05). Also, it shows that 
Cote d’Ivoire has the highest mortality rate of 0.98 (sd = 0.06) for 
Kidney cancer, while Nigeria has the lowest mortality rate of 0.74 
(sd = 0.08), and the Kidney cancer mortality rates across the five 
West African countries are significantly different from each other (p 
< 0.05).  
In addition, it revealed that Cote d’Ivoire has the highest mortality 
rate of 17.28 (sd = 1.27) for Stomach cancer, while Nigeria has the 
lowest mortality rate of 4.93 (sd = 0.18), and the Stomach cancer 
mortality rates across the five West African countries are 
significantly different from each other (p < 0.05). Also, it shows that 
Cote d’Ivoire has the highest mortality rate of 4.94 (sd = 0.47) for 
oesophageal cancer, while Nigeria has the lowest mortality rate of 
1.03 (sd = 0.05), and the oesophageal cancer mortality rates 
across the five West African countries are significantly different 
from each other (p < 0.05). 
Furthermore, the Table 4 revealed that Cote d’Ivoire has the 
highest mortality rate of 13.55 (sd = 0.36) for TBL cancer, while 
Nigeria has the lowest mortality rate of 7.74 (sd = 0.71), and the 
TBL cancer mortality rates across the five West African countries 
are significantly different from each other (p < 0.05). Also, it shows 
that Cote d’Ivoire has the highest mortality rate of 9.36 (sd = 0.22) 
for Colon and rectum cancer, while Liberia has the lowest mortality 
rates of 6.16 (sd = 0.55) and the Colon and rectum cancer mortality 
rates across the five West African countries is significantly different 
from each other (p < 0.05). 
Likewise, it revealed that Cote d’Ivoire has the highest mortality 
rate of 1.40 (sd = 0.15) for Gallbladder and biliary tract cancer while 
Nigeria has the lowest mortality rates of 0.82 (sd = 0.03) and the 

Gallbladder and biliary tract cancer mortality rates across the five 
West African countries significantly differs from each other (p < 
0.05). Also, it shows that Cote d’Ivoire has the highest mortality rate 
of 7.07 (sd = 1.59) for Liver cancer, while Senegal has the lowest 
mortality rate of 2.26 (sd = 0.08), and the Liver cancer mortality 
rates across the five West African countries are significantly 
different from each other (p < 0.05). 
Lastly, it revealed that Ghana has the highest mortality rate of 2.44 
(sd = 0.07) for Brain and CNS cancer, while Liberia has the lowest 
mortality rate of 1.04 (sd = 0.15), and the Brain and CNS cancer 
mortality rates across the five West African countries was 
significantly different from each other (p < 0.05). 
In general, it shows that Cote d’Ivoire shows consistently higher 
cancer mortality rates, while Nigeria shows lower cancer mortality 
rates, and the other three countries remain in between them. 
However, the Kolmogorov-Smirnov test shows that the data for 
none of the cancer variants is normally distributed even with 
transformation. 
 
DISCUSSION 
The study found various mortality rates range for the nine cancer 
variants across the different countries, 1.16 – 3.79 for Bladder 
cancer, 0.74 – 0.89 for Kidney cancer, Stomach cancer (4.93 – 
17.28), Esophageal (1.03 – 4.94), Tracheal, bronchus and lung 
cancer (7.74 – 13.55), Colon and rectum cancer (6.16 – 9.36), 
Gallbladder and biliary tract cancer (0.82 – 1.40), Liver cancer 
(2.26 – 7.07) and Brain and central nervous system (1.04 – 2.44).  
These results were in tandem with the mean mortality rates 
reported by (Bray et al., 2024; Sharma et al., 2022; Hamdi et al., 
2021), while others were different from the global means. The 
mortality rate of bladder cancer in West African countries was found 
to be lower than the African average of over 8 per 100,000 and 
about 3.5 per 100,000 in northern Africa (Pizzato et al., 2024; 
Morgan et al., 2022; Adeloye et al., 2019).  
The study also found that the assumption of normality and equal 
variance-covariance across the different cancer variants was 
violated, but using the Robust Pillai’s Trace statistic, the 
multivariate test was interpreted to reach conclusions. However, 
care must be taken in the conclusions on the results that follow, as 
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Liu, et al., (2023) observed that none of the multivariate tests was 
robust. Though Olson (1976) observed that it is more important to 
watch out for type I and type II errors in the choice of test adopted, 
there has not been agreement or preference on any of the tests as 
in most cases these assumptions are violated even with simulated 
data under various scenarios and it was not different in the real-life 
data used for this study as transformation did not help handle these 
violations (Ates, et al., (2019); Adeleke, et al., (2015)).  
The study further found significant multivariate results in the 
mortality rates across the different cancer variants for the selected 
West African countries and across the 30 years studied. The 
subsequent univariate Analysis of Variance test shows that Cote 
d’Ivoire has a consistently higher mortality rate for the cancer 
variants studied, while Nigeria consistently had the lowest mortality 
rates from the cancer variants. The consistency in ranking may not 
have any real import, as it has been observed that incomplete 
recording, non-reporting of cases, inadequate infrastructure for 
capturing cancer events and weak policies and political will in 
dealing with cancer-related issues may actually have contributed 
to the variations found. There was no study found to compare our 
results because there have not been studies specific on the 
mortality rate of various variants of cancer but most studies have 
measured crude rate for all cancer variants but not variant-specific 
and others have looked at the percentage for all cancer deaths by 
countries (Igbokwe, (2023); Smailyte & Kurtinaitis, (2008); 
Kamangar, et al., (2006)).  
 
Conclusion 
Having compared the CVMR of five West African countries from 
1990 to 2019 using the multivariate analysis of variance 
(MANOVA), the study concluded that over the study periods, there 
was a significant difference in the vector of means of the cancer-
variants for the five studied countries, with Nigeria consistently 
lower and Cote d’Ivoire consistently higher rates. Care should be 
taken in digesting these results without question, as many 
challenges have bedeviled data capturing and reporting, especially 
in these low-income countries (LICs). However, with violations of 
the normality and homogeneity of variance-covariance matrix 
assumptions of MANOVA by the real-life data, the use of the results 
should be with caution and efforts put in place to evolve methods 
that will correct for the violations. 
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