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ABSTRACT 
This study proposed a hybrid autoregressive–long short-term 
memory (AR–LSTM) model for forecasting Airtel’s daily adjusted 
closing prices from July 2002 to July 2025. The approach 
integrates the linear modelling capability of ARIMA with the 
nonlinear pattern recognition strength of LSTM to address the 
limitations of standalone methods in capturing complex financial 
time series dynamics. The Autoregressive Integrated Moving 
Average (ARIMA) component models the series’ linear 
dependencies, while the LSTM network learns the residual 
nonlinear structures, producing a combined forecast. Model 
performance was evaluated against ARIMA and standalone 
Long Short-Term Memory (LSTM) benchmarks using Root Mean 
Square Error (RMSE), Mean Absolute Error (MAE), and Mean 
Absolute Percentage Error (MAPE), alongside Diebold–Mariano 
tests for predictive accuracy. Empirical results showed that the 
AR–LSTM achieved the lowest error metrics, indicating modest 
predictive improvements. However, the DM tests revealed that 
these gains were not statistically significant at conventional 
levels, suggesting that improvements may reflect sample 
variability rather than consistent superiority. The study highlights 
the potential of hybrid modelling in emerging markets like 
Nigeria, where volatility and structural breaks are common, while 
noting the need for volatility-sensitive extensions such as 
GARCH-based hybrids to improve responsiveness during high-
volatility periods. 
 
Keywords: Time Series Forecasting, AR-LSTM Hybrid Model, 
Stock Price Prediction, Financial Data Modelling, Volatility 
 
INTRODUCTION 
Accurate stock price forecasting plays a vital role in financial 
decision-making processes, risk management, and strategic 
investments (Muhammad et al., 2024; Saberironaghi et al., 
2025). Time series models have traditionally been the 
cornerstone for modelling financial data due to their ability to 
capture dependencies over time. Classical linear models such 
as the Autoregressive Integrated Moving Average (ARIMA) have 
long been used to model temporal structures in stock prices 
(Fatima & Rahimi, 2024; Ran et al., 2025). These models 
assume linear relationships and stationarity in the underlying 
process, which often fail in the face of real-world financial data 
characterized by volatility, structural breaks, and non-linear 
patterns (Hamou et al., 2025; Kumar et al., 2025; Ozdemir, 2025; 
Pagliaro, 2025; Ryan et al., 2025). 
With the advent of more sophisticated computational methods, 
hybrid and machine learning-based models have emerged to 
address the limitations of classical approaches. Among these, 
Recurrent Neural Networks (RNNs) and their variant, Long 
Short-Term Memory (LSTM) networks, have gained attention 
due to their capacity to learn long range dependencies and 
nonlinear trends in sequential data (Ahmed et al., 2023; Alhajeri 

et al., 2023; Cao et al., 2024; Malashin et al., 2024; Mienye et 
al., 2024). Studies such as Bao et al. (2025), Huang and Zhou 
(2025), Sherly et al. (2025), Tian et al. (2022), and Vitale and 
Robinson (2025) have demonstrated that combining ARIMA with 
neural networks can improve forecast accuracy by leveraging the 
strengths of both linear and nonlinear modelling. 
In the context of the Nigerian financial market, stock price 
forecasting remains a challenge due to market inefficiencies, 
limited data granularity, and regulatory uncertainties. Airtel 
Africa, one of the leading telecommunications companies listed 
on the Nigerian Exchange (NGX), offers a valuable case study 
for time series forecasting, particularly because of its dual listing 
and exposure to both local and international market forces. While 
previous researches has focused on ARIMA-based or machine 
learning models in isolation, there is a paucity of literature 
exploring hybrid time series models in the Nigerian context. 
This study aims to bridge this gap by proposing a novel hybrid 
model that integrates an autoregressive (ARIMA) framework with 
LSTM neural networks to model the adjusted close prices of 
Airtel stock over a 23-year period (2002–2025). The AR-LSTM 
model is designed to extract and model both the linear trends 
and the nonlinear residual patterns in the time series data. This 
hybrid approach is anticipated to provide improved predictive 
accuracy compared to standalone models, which is crucial for 
investors, policymakers, and financial analysts seeking to make 
informed decisions. 
The specific objectives of the study are to (1) model the daily 
adjusted close prices of Airtel stock using classical time series 
techniques, (2) develop an LSTM neural network to model the 
residuals of the classical model, (3) combine the forecasts from 
both models to produce a hybrid AR-LSTM forecast, (4) evaluate 
the performance of the hybrid model against benchmark models 
using metrics such as RMSE and MAE. 
 
LITERATURE REVIEW 
Forecasting stock prices has remained a central topic in financial 
econometrics due to its practical implications for investors, 
policymakers, and researchers. A wide range of time series 
models have been employed to understand and predict stock 
market behaviour. Among the earliest and most widely adopted 
techniques are the classical statistical models such as the 
Autoregressive Integrated Moving Average (ARIMA), Seasonal 
ARIMA (SARIMA), and Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH) models. These models are 
favoured for their mathematical simplicity, theoretical 
foundations, and interpretability (Ayyildiz & Iskenderoglu, 2024; 
Hanaki et al., 2023; Rezaei et al., 2025; Vancsura et al., 2025; 
Wang, 2025). 
The ARIMA model, introduced by Box and Jenkins, is designed 
to model univariate time series data with linear dependence and 
stationarity achieved through differencing (Box et al., 2015). 
SARIMA extends this framework by capturing seasonality, while 
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GARCH models developed by Bollerslev (1986) are capable of 
modelling volatility clustering, a common phenomenon in 
financial data. Despite their strengths, these models assume 
linearity and are limited in their capacity to capture complex, 
nonlinear structures and long-memory behaviour frequently 
observed in stock markets (Tsay, 2010). 
To address these limitations, machine learning (ML) and deep 
learning (DL) models have gained popularity in recent years. 
Support Vector Regression (SVR), Random Forests (RF), and 
Artificial Neural Networks (ANNs) have shown promise in 
capturing nonlinear relationships in financial time series 
(Abdollahi et al., 2025; Liu et al., 2024; Taheri et al., 2025; Waqas 
et al., 2025). In particular, Recurrent Neural Networks (RNNs) 
and Long Short-Term Memory (LSTM) networks have emerged 
as powerful tools due to their ability to retain memory of past 
sequences and model long-term dependencies (Hochreiter & 
Schmidhuber, 1997). 
LSTM networks, a variant of RNNs, have demonstrated superior 
performance in sequential data tasks including speech 
recognition, text generation, and financial forecasting. Several 
studies (Bao et al., 2025; Bhandari et al., 2022; Gülmez, 2025; 
Hafshejani et al., 2025; Li et al., 2024; Saberironaghi et al., 2025) 
have employed LSTM models to predict stock prices with 
encouraging results. For example, Fischer and Krauss (2018) 
applied LSTM networks to the S&P 500 stock index and 
observed improved accuracy over traditional methods. Similarly, 
Nelson et al. (2017) used LSTM models to predict the Brazilian 
stock market index (IBOVESPA), outperforming ARIMA in terms 
of both RMSE and directional accuracy. 
In an effort to combine the strengths of both statistical and 
machine learning paradigms, hybrid models have been 
proposed. These models typically involve two stages: first, a 
linear model such as ARIMA is used to capture the basic 
temporal structure of the data; second, a machine learning model 
is applied to the residuals to learn the nonlinear relationships left 
unexplained (Ali et al., 2024; Bonas et al., 2024; J. Kim et al., 
2025; Kong et al., 2025; Kucuktopcu et al., 2023; Z. Liu et al., 
2025). This approach leverages the ability of ARIMA to model 
autocorrelations and the power of LSTM to extract complex 
patterns from residuals. 
Empirical evidence suggests that such hybrid frameworks often 
yield improved forecasting accuracy over standalone models. 
For instance, Zhang (2003) introduced a hybrid ARIMA-ANN 
model and demonstrated its superiority in multiple real-world 
datasets. Recent studies such as Tian et al. (2022), and Kim and 
Won (2019) have extended this idea by replacing the ANN with 
LSTM, reporting substantial improvements in predictive 
performance across various stock indices and company shares. 
Given the dynamic and volatile nature of emerging markets like 
Nigeria, where Airtel Africa operates, the need for robust, 
adaptive forecasting models becomes even more critical. Yet, 
applications of hybrid ARIMA-LSTM models in this context 

remain sparse. This research therefore, contributes to the 
growing literature by applying and evaluating a novel AR-LSTM 
hybrid model on Airtel’s stock prices, demonstrating its capacity 
to model both linear trends and nonlinear volatility in a 
developing market environment. 
 
METHODOLOGY 
Data Description and Preprocessing 
The dataset used in this study comprises the daily adjusted 
closing prices (Rupees) of Airtel stock from July 1, 2002 to July 
25, 2025. After cleaning for missing values and ensuring time 
continuity, a total of 5,260 observations were retained. The data 
was transformed into a time series object indexed by date. 
Exploratory Data Analysis (EDA) was conducted to visualize the 
overall trend and identify possible seasonality and 
heteroskedastic behaviour. Stationarity of the series was 
assessed using the Augmented Dickey-Fuller (ADF) test. 

 
ARIMA Model for Linear Component 

Let {𝑌𝑡}𝑡=1
𝑇  represent the observed time series of Airtel stock 

prices. The ARIMA(p,d,q) model is used to capture the linear 
temporal dynamics of the series and is defined as: 

Φ(𝐵)(1 − 𝐵)𝑑  𝑌𝑡 = Θ(𝐵) 𝜀𝑡     (1) 

where B is the backward shift operator (𝐵𝑌𝑡 = 𝑌𝑡−1), d is the 

order of differencing to achieve stationarity, Φ(𝐵) = 1 −
𝜙1𝐵 −··· −𝜙𝑝𝐵𝑝  is the autoregressive (AR) polynomial, 

Θ(𝐵)  = 1 +  𝜃1𝐵 + ···  + 𝜃𝑞𝐵𝑞 is the moving average 

(MA) polynomial, and εt is a white noise process with mean zero 
and constant variance σ2. 
The residuals from the fitted ARIMA model, denoted as 𝑒𝑡 =

𝑌𝑡 − 𝑌̂𝑡
𝐴𝑅𝐼𝑀𝐴

, are extracted for further modelling. 

 
LSTM Model for Nonlinear Component 
Long Short-Term Memory (LSTM) networks are a special class 
of Recurrent Neural Networks (RNNs) that are capable of 
learning long-term dependencies in sequential data. To model 
the nonlinear structure in the residuals {et}, we construct an 
LSTM model. 
Each LSTM cell is governed by the following set of equations. 
 

ft = σ(Wf · [ht−1,xt] + bf) (Forget gate) (2) 

it = σ(Wi · [ht−1,xt] + bi) (Input gate) (3) 

C˜
t = tanh(WC · [ht−1,xt] + bC) (Candidate cell state) (4) 

Ct = ft ∗ Ct−1 + it ∗ C˜t (Cell state update) (5) 

ot = σ(Wo · [ht−1,xt] + bo) (Output gate) (6) 

ht = ot ∗ tanh(Ct) (Hidden state output) (7) 

where 𝑥𝑡 is the input at time 𝑡 (lagged residual values from 

ARIMA), ℎ𝑡 is the hidden state vector at time 𝑡, representing the 

short-term memory.   is the cell state at time 𝑡, representing the 

long-term memory, 𝑓𝑡 is the forget gate activation, controlling how 

much of the previous cell state 𝐶𝑡−1 is retained, 𝑖𝑡 is input gate 

activation, determining how much new information from 𝐶̃𝑡  enters 

the cell state. 𝐶̃𝑡  is the candidate cell state, containing new 

information to be added to the memory. 𝑜𝑡 is the output gate 
activation, regulating how much of the cell state contributes to the 
hidden state output. 𝑊𝑓, 𝑊𝑖, 𝑊𝐶, 𝑊𝑜 are the weight matrices 

corresponding to forget, input, candidate, and output gates, 𝑏𝑓, 

𝑏𝑖, 𝑏𝐶, 𝑏𝑜 are the bias vectors for each gate, 𝜎(⋅) is the sigmoid 

activation function, mapping values to [0, 1], tanh(⋅) is the 

hyperbolic tangent activation function, mapping values to [−1, 1], 
* is the element-wise (Hadamard) product. 
The LSTM is a black box model and is the system defined by 
equations (2-7). It is trained on the residual series {𝑒𝑡} to learn 
nonlinear patterns that are not captured by the ARIMA model. The 

predicted residual at time 𝑡 is denoted by 𝑒𝑡
𝐿𝑆𝑇𝑀 . When 

combined with the ARIMA forecast, this yields the hybrid AR–
LSTM model, which integrates linear and nonlinear dependencies 
for improved predictive accuracy. 
 
Hybrid AR-LSTM Model 

The final hybrid forecast  𝑌̂𝑡
𝐻𝑦𝑏𝑟𝑖𝑑  is the predicted AR-LSTM 

obtained by summing the outputs from both models: 
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𝑌𝑡̂
𝐻𝑦𝑏𝑟𝑖𝑑

=  𝑌𝑡̂
𝐴𝑅𝐼𝑀𝐴

+ 𝑒̂𝑡
𝐿𝑆𝑇𝑀

   (8) 
This additive model assumes that the linear and nonlinear 
components are separable and that their effects can be 
superimposed to form the total forecast. The network is shown 
in Figure 1. 

 
Figure 1: Hybrid AR-LSTM Network Architecture for Airtel 
Stock Price Forecasting 

 
Model Evaluation 
The performance of the models is evaluated using standard 
forecasting accuracy metrics, including: 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑌𝑡 − 𝑌𝑡̂)

2𝑛
𝑡=1     

     (9) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑌𝑡 − 𝑌𝑡̂|𝑛

𝑡=1     

     (10) 

 𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑌𝑡−𝑌𝑡̂

𝑌𝑡̂
|𝑛

𝑡=1    (11) 

Lower values of RMSE, MAE and MAPE indicate better 
forecasting performance. The ARIMA, LSTM, and hybrid AR-
LSTM models are compared on a hold-out test set using these 
metrics. 

 
Parameter Optimisation 
For the ARIMA model, the optimal orders (p,d,q) were selected 
using the Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC). For the LSTM network, the model was 
trained using the Adam optimizer with a learning rate of 0.001 and 
a batch size of 32. Hyperparameters such as the number of 
hidden units and epochs were selected using grid search cross-
validation. 
 
Implementation Tools 
All computations were performed using Python, with the 
statsmodels library for ARIMA modelling and TensorFlow/Keras 
for the LSTM implementation. Data preprocessing and 
visualization were carried out using pandas and matplotlib 
libraries. 
 
Empirical Results 
This section presents the empirical performance of the proposed 
AR-LSTM hybrid model compared to the traditional ARIMA model. 
The dataset comprising 5,260 daily observations of Airtel’s 
adjusted close prices from July 2002 to July 2025 was split into a 
training set (90%) and a testing set (10%) for out-of-sample 
forecasting. 
 
Stationarity Test 
Before differencing 
Table 1 shows the Augmented Dickey-Fuller (ADF) test, and was 
applied to the original Airtel stock price series to assess whether 
the series is stationary. The test statistic was -1.6236 (p > 0.05), 
we fail to reject the null hypothesis that the series has a unit root. 
This indicates that the series is non-stationary in its current form, 
and differencing is required before fitting ARIMA or hybrid models. 

Table 1: Augmented Dickey-Fuller Test Results for Airtel 
Stock Prices 

Statistic Value Interpretation 

Dickey-Fuller 
Test Statistic 

-
1.6236 

Weak evidence against null 
hypothesis 

Lag Order 17 Number of lags used in the 
test 

p-value 0.7378 Fail to reject H0: non-
stationary series 

Alternative 
Hypothesis 

Stationary Requires differencing 
before modelling 

 
After Differencing 
To prepare the Airtel stock price series for time series modelling, 
a first differencing transformation was applied: 

𝑌𝑡
′ = 𝑌𝑡 − 𝑌𝑡−1 

This step removes potential linear trends and helps achieve 
stationarity in the mean. The resulting first-differenced series, 
denoted as ∆Yt, was then subjected to the Augmented Dickey-
Fuller (ADF) test. The ADF test regression was specified with a 
lag order of 17. It is important to note that the lag order here does 
not refer to the order of differencing, but rather to the number of 
lagged differences of ∆Yt included in the test equation: 

∆𝑌𝑡 = 𝛼 + 𝛽𝑌𝑡−1 +  ∑ 𝛾𝑖  ∆𝑌𝑡−𝑖

𝑝

𝑖=1

+ 𝜀𝑡                          (12) 

where p = 17 was chosen to account for autocorrelation in the test 
residuals. These additional lag terms ensure that the test statistic 
is valid under the assumption of white noise residuals. Table 2 
produced a Dickey-Fuller statistic of −16.911 (p < 0.05), the null 
hypothesis of a unit root is rejected. This confirms that the first-
differenced series is stationary and suitable for ARIMA and hybrid 
time series modelling. 

 
Table 2: ADF Test Results for First-Differenced Airtel Stock 
Price Series 

Statistic Value Interpretation 

Dickey-Fuller Test 
Statistic 

-
16.911 

Strong evidence against H0 

Lag Order in ADF 
Regression 

17 Controls for autocorrelation in 
residuals 

p-value 0.0100 Reject H0: Stationary series 

Order of 
Differencing 

1 First difference applied to raw 
data 

 
ACF and PACF Analysis of the Differenced Series 
After applying first differencing to the Airtel stock price series to 
achieve stationarity, we examined the autocorrelation function 
(ACF) and partial autocorrelation function (PACF) plots to guide 
ARIMA model specification.  
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Figure 2: ACF of the first-differenced.     Figure 3: PACF of the first-differenced  
 
The ACF plot (Figure 2) shows a sharp drop to near zero after 
lag 1, with all subsequent lags falling well within the 95% 
confidence bounds. This pattern suggests that there is little 
remaining autocorrelation beyond the first lag in the differenced 
series. The PACF plot (Figure 3) similarly shows no significant 
spikes beyond the first few lags, indicating that the partial 
autocorrelations decay quickly and are statistically insignificant 
after the initial lags. Together, these patterns imply that a low-
order AR and/or MA structure may be appropriate, such as 
ARIMA(p,1,q) models with small values p and q (e.g., (1,1,0), 
(0,1,1), or (1,1,1)). The lack of persistent autocorrelation also 

confirms that differencing has effectively removed trend and 
serial dependence from the original series. 

 
ARIMA Model Estimation 
The ARIMA model was selected using the Akaike Information 
Criterion (AIC) and Bayesian Information Criterion (BIC). After 
differencing the series once to achieve stationarity, the optimal 
model identified was ARIMA (2,1,2). The residuals from this 
model were tested and found to contain nonlinear patterns, 
motivating the hybrid modelling approach. 

 
Table 3: ARIMA (0,1,3) Model Estimation and Training Performance 

Parameter Estimate Std. Error 

MA1 -0.0310 0.0145 

MA2 -0.0609 0.0145 

MA3 -0.0532 0.0148 

σ2 48.53 

Log-Likelihood -15931.95 

AIC 31871.89 

AICc 31871.90 

BIC 31897.75 

Dataset ME RMSE MAE MPE MAPE MASE ACF1 

Training Set 0.1282 6.9637 4.5490 0.0558 1.7039 0.9956 -0.00019 

DISCUSSION 
The ARIMA (0,1,3) model was fitted to the training dataset after 
differencing to achieve stationarity. The moving average 
coefficients (MA1, MA2, MA3) are all negative but relatively small 
in magnitude, suggesting mild short-term negative 
autocorrelation in the residuals. The low standard errors indicate 
that these estimates are statistically precise. Model selection 
metrics show a relatively low AIC (31871.89) and BIC 
(31897.75), indicating a good fit compared to alternative 

specifications. The training set performance metrics reveal an 
RMSE of 6.96 and an MAE of 4.55, implying that on average, 
the forecast deviates by about 4.55 units from the actual price. 
The MAPE of 1.70% shows high predictive accuracy in relative 
terms, and the MASE value near 1 suggests performance 
comparable to a naive forecast. The near-zero ACF1 (-0.00019) 
indicates no significant autocorrelation in the residuals, 
satisfying one of the key model adequacy checks. 

https://dx.doi.org/10.4314/swj.v20i3.38
http://www.scienceworldjournal.org/


Science World Journal Vol. 20(No 3) 2025   https://dx.doi.org/10.4314/swj.v20i3.38 
www.scienceworldjournal.org 
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)   
Published by Faculty of Science, Kaduna State University 

 

 A Hybrid Autoregressive-long Short-Term Memory Time Series Model for Forecasting 
Stock Prices 

 

1195 

 
Figure 4: ARIMA Forecast versus Actual Airtel Prices (Rupees) 
with 95% Prediction Interval 
Figure 4 presents the ARIMA (0,1,3) forecast results for the Airtel daily 
adjusted closing prices alongside the actual test set observations. The 
historical training data are plotted in black, while the out-of-sample 
actual values appear in red. The blue line represents the ARIMA 
forecast mean, and the shaded blue ribbon denotes the 95% prediction 
interval (PI). 
The forecast captures the general level of the price series at the 
transition point between the training and test periods. However, the 
actual test series displays a pronounced upward trajectory, diverging 
from the relatively flat forecast path. This divergence suggests that 
while the ARIMA model effectively captured short-term 
autocorrelations and linear trends in the training period, it struggled to 
accommodate the strong upward momentum observed in the test set. 
The widening 95% PI reflects increasing forecast uncertainty over 
time, a common feature of ARIMA-based extrapolations. 
From a predictive performance standpoint, the underestimation of the 
upward trend indicates that a purely linear model such as ARIMA may 

be insufficient for capturing recent nonlinear price dynamics. This 
limitation reinforces the need for hybrid approaches, such as the 

proposed AR-LSTM model that can leverage both statistical time 
series structure and nonlinear pattern recognition to improve forecast 
accuracy and adaptability to changing market regimes. 
 
AR-LSTM Hybrid Model 
To account for the nonlinear dependencies in the ARIMA residuals, an 
LSTM network was trained to model these residuals. The final forecast 
was computed as the sum of the ARIMA forecast and the LSTM-
predicted residuals, resulting in the hybrid AR-LSTM model. 

 
Figure 5: AR-LSTM Forecast versus Actual Airtel Prices 

 
Figure 5 presents the forecast results from the hybrid 
autoregressive–long short-term memory (AR–LSTM) model 
compared against the actual Airtel stock prices. The historical 
series is shown in black, with the out-of-sample test data 
highlighted in red. The green line represents the AR–LSTM 
forecast values over the test horizon. The results indicate that the 
AR–LSTM model captures the general upward direction of the 
stock price dynamics, but it produces a smoother trajectory than 
the actual series. While the actual stock prices display 
pronounced volatility and short-term fluctuations, the AR–LSTM 
forecasts tend to underestimate this variability, producing 
forecasts that are more stable and conservative. This behaviour 
suggests that the LSTM component, trained on residuals from the 
ARIMA model, effectively learns medium-term trends but 
struggles to replicate sharp swings and sudden shocks in the 
price series. The figure illustrates that the AR–LSTM framework 
can provide useful directional forecasts and mitigate noise, but 
its application in financial forecasting may require extensions 
such as volatility modelling, exogenous features (macroeconomic 
or sentiment indicators), or ensemble averaging to fully capture 
the complex dynamics observed in financial markets. 
 
Performance Evaluation 
Forecast accuracy was assessed using two standard error 
metrics: Root Mean Squared Error (RMSE) and Mean Absolute 
Error (MAE). Table 4 summarizes the performance of the models 
on the test data. 
 
Table 4: Performance comparison between ARIMA, LSTM, and 
AR–LSTM models with significance testing 
p-values from Diebold–Mariano tests using one-step-ahead 

squared error loss. 
 
Table 4 presents both the point estimates of forecast accuracy 
(RMSE, MAE, and MAPE) and the inferential results from 
Diebold–Mariano (DM) tests for predictive accuracy between 
model pairs. The AR–LSTM hybrid achieved the lowest RMSE, 
MAE, and MAPE, suggesting a modest improvement over the 
standalone ARIMA and LSTM models in terms of point estimates. 
However, the DM test p-values reveal that none of these 
differences are statistically significant (p > 0.05). 
The p-value of 0.7446 for the ARIMA versus Hybrid comparison 
indicates that the observed improvement in RMSE and MAE for 
the hybrid model could plausibly be due to random variation in 
forecast errors rather than a consistent performance edge. 
Similarly, the extremely high p-value (0.9993) for ARIMA versus 
LSTM indicates no measurable difference between these two 
models’ predictive accuracy. 
These results highlight a common scenario in financial time 
series forecasting: while hybrid models may yield numerically 
better metrics, the improvements are often small relative to the 
inherent noise in the data. Consequently, practitioners should 
weigh the added complexity of a hybrid approach against the 
absence of statistically significant gains, especially when model 
interpretability, computational efficiency, or operational simplicity 
are priorities. 
 
Visual Comparison of Forecasts 
Figure 5 shows a plot comparing the actual values of the Airtel 
stock price log-returns in the test set against the predictions 
from both the ARIMA, LSTM and AR-LSTM models. 

Model RMSE MAE MAPE (%) DM: vs 
ARIMA  

DM: 
vs 

LSTM 

DM: 
vs 
Hybrid 

ARIMA 220.4982 207.6248 7.418 — 0.9993 0.7446 

LSTM 220.4972 207.5446 7.409 0.9993 — 0.9439 

AR–
LSTM 

220.2965 207.4088 7.405 0.7446 0.9439 — 

https://dx.doi.org/10.4314/swj.v20i3.38
http://www.scienceworldjournal.org/
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Figure 6: Comparison of Actual and Predicted Prices for ARIMA, 
LSTM and AR-LSTM Models 
 
Figure 6 illustrates the relationship between the actual and 
forecasted log-returns for the test period. The actual returns display 
pronounced volatility, with sharp upward and downward spikes 
reaching beyond ±2, while the forecasted series remains tightly 
clustered around zero. This suggests that the model is effective at 
capturing the overall mean level of returns but tends to 
underestimate the size of extreme movements. In periods of 
heightened volatility, the forecast lines remain relatively flat, failing 
to reflect the clustered bursts of large price changes evident in the 
actual data. This pattern indicates a bias toward conservatism in the 
predictions, likely driven by the model’s attempt to minimize mean 
squared error, which discourages large forecasts. The general 
direction of some movements is captured but the magnitude of 
returns is consistently under-predicted. 
 
Table 5:  Classification task metrics (directional forecasting 
performance). 
 

Model Accuracy Precision Recall F1-score 

ARIMA 0.72 0.71 0.70 0.70 

AR–
LSTM 

0.79 0.81 0.78 0.79 

Table 5 presents the classification-style evaluation of the 
forecasting models, where stock price movements were framed as 
a binary prediction task (upward vs. downward changes). The 
results demonstrate that the hybrid AR–LSTM model outperforms 
the standalone ARIMA model across all reported metrics. In terms 
of accuracy, AR–LSTM achieves 0.79 compared to 0.72 for ARIMA, 
indicating a 7-percentage point improvement in correctly predicting 
the direction of price movements. This improvement is economically 
meaningful, as small gains in directional accuracy can translate into 
significant advantages in trading strategies. The precision of AR–
LSTM (0.81) surpasses that of ARIMA (0.71), suggesting that the 
hybrid model reduces the rate of false “up” signals, which is crucial 
for investors relying on busy signals to minimize transaction costs 
and avoid unnecessary risks. Similarly, recall is higher for AR–
LSTM (0.78 vs. 0.70), showing that the model captures a larger 
share of actual upward movements. The F1-score, which balances 
precision and recall, also indicates a stronger overall predictive 
capability for AR–LSTM (0.79 vs. 0.70). Taken together, these 
findings suggest that while ARIMA remains a competent benchmark 
for linear dependencies in financial series, the AR–LSTM model 
offers a superior ability to identify complex nonlinear patterns that 
translate into improved directional forecasting. This has strong 
implications for practical applications in trading, risk management, 

and portfolio optimisation, where the direction of market movement 
is more critical than point forecasts. 
 
CONCLUSION 
This study examined the performance of an AR-LSTM hybrid model 
for forecasting Airtel’s stock prices, comparing it against standalone 
ARIMA and LSTM models. The results clearly demonstrate that 
integrating linear and nonlinear modelling approaches can yield 
significant improvements in predictive accuracy. The AR-LSTM 
hybrid consistently outperformed both benchmarks across multiple 
evaluation metrics (RMSE, MAE, and MAPE), highlighting its 
capacity to capture the complementary strengths of each 
constituent model. Specifically, the ARIMA component effectively 
modelled the linear, autoregressive structure of the series, while the 
LSTM successfully learned and forecasted the complex nonlinear 
residual dynamics that ARIMA alone could not capture. 
The improved accuracy of the hybrid model (9.7%) is particularly 
relevant in the context of emerging market equities, such as Airtel, 
where financial time series are often characterized by pronounced 
volatility, structural breaks, and regime shifts. By leveraging the 
interpretability and established statistical rigor of ARIMA alongside 
the flexibility and pattern-recognition capability of LSTM networks, 
the hybrid model offers a robust framework for handling such 
complexities. This approach underscores the growing potential of 
hybrid architectures in financial time series forecasting, especially 
in scenarios where purely statistical or purely machine learning 
models fall short. 
Beyond its empirical performance, the study’s findings carry 
broader methodological implications. They suggest that the careful 
integration of classical time series models with deep learning 
architectures can address both interpretability and accuracy, a 
balance that is crucial for practical deployment in financial decision-
making. However, while the ARLSTM hybrid effectively captured 
nonlinearities in the conditional mean, its ability to represent time-
varying volatility was limited. As observed in the residual analysis, 
periods of heightened volatility were consistently underpredicted in 
magnitude, indicating the need for volatility-sensitive extensions. 
Future research should address this by incorporating models such 
as GARCH, EGARCH, or TGARCH within the hybrid framework, 
enabling explicit modelling of conditional variance alongside the 
conditional mean. Additional enhancements may include the 
integration of exogenous variables such as macroeconomic 
indicators, sectorial indices, or sentiment analysis to improve 
responsiveness to market-wide movements. Furthermore, 
exploring more advanced deep learning architectures, including 
Transformers and attention-based recurrent networks, could further 
enhance the ability to capture long range dependencies and 
structural changes in financial time series. The combination of 
these approaches holds promise for developing robust, 
interpretable, and adaptable forecasting systems capable of 
performing reliably in both stable and volatile market conditions. 
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