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ABSTRACT 
The accelerated overrelaxation (AOR) method is a widely used 
iterative method for solving large, sparse systems of linear 
equations due to its simplicity and low memory requirements. 
However, the AOR method may not always converge or may 
converge slowly for certain type of matrices. Preconditioning and 
refinement strategies are some of the techniques that have been 
introduced to overcome these limitations. This study presents the 
third refinement of a preconditioned accelerated overrelaxation 
iterative method, geared towards further enhancement of its 
convergence properties. It involves the application of a repeated 
refinement technique to a preconditioned AOR method to minimize 
its spectral radius, thereby reducing the iteration count and 
computational time. Theoretical convergence analysis and 
numerical experiments confirm the enhanced convergence 
properties, efficiency and accuracy of the refined method, 
significantly outperforming the existing AOR, its preconditioned 
variant and earlier refinements. This enhancement has far-
reaching implications for solving large-scale linear systems in 
varied scientific and engineering application. 
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INTRODUCTION 
Consider the linear system 

𝐵𝑥 = 𝑐                                                                             (1) 

where the coefficient matrix 𝐵 is a nonsingular 𝑛 − square matrix 

with nonvanishing diagonal elements, 𝑐 is a column vector and 𝑥 

is the vector of unknowns. A usual splitting of 𝐵 is obtained thus, 

𝐵 = 𝐷 − 𝐿𝐵 − 𝑈𝐵                                                                    (2) 

where 𝐷,−𝐿𝐵 and − 𝑈𝐵  are the diagonal, strictly lower and 

strictly upper triangular parts of 𝐴 respectively. The system (1) can 
then be written as  

𝐷−1(𝐷 − 𝐿𝐵 − 𝑈𝐵)𝑥 = 𝐷−1𝑐                                   (3) 
(𝐼 − 𝐿 − 𝑈)𝑥 = 𝑏                                                 (4) 

𝐴𝑥 = 𝑏                                                                   (5) 

where 𝐴 = 𝐷−1𝐵 = 𝐼 − 𝐿 − 𝑈,   𝑏 = 𝐷−1𝑐,   𝐿 = 𝐷−1𝐿𝐵,
𝑈 = 𝐷−1𝑈𝐵.  
The basic iterative methods for solving (1), or its equivalent form 
(5), include Jacobi, Gauss-Seidel, SOR and AOR methods. The 
Jacobi method is defined by  

𝑥(𝑛+1) = ℒ𝐽𝑥
(𝑛) + 𝑘𝐽  ,               𝑛 = 0,1,2,⋯              (6) 

where ℒ𝐽 = 𝐷−1(𝐿𝐵 + 𝑈𝐵) and 𝑘𝐽 = 𝐷−1𝑐. Alternatively,  

ℒ𝐽 = 𝐿 + 𝑈, and 𝑘𝐽 = 𝑏. Here, ℒ𝐽 is known as the Jacobian 

iteration matrix. Its spectral radius, 𝜌(ℒ𝐽), is given by the relation 

𝜌(ℒ𝐽) = 𝜇̅                                                                (7) 

where 𝜇̅ = max
𝑖

|𝜇𝑖| , 𝜇𝑖  (𝑖 = 1(1)𝑛) is an eigenvalue of ℒ𝐽. 

The Gauss-Seidel method has the iteration formula   

𝑥(𝑛+1) = ℒ𝐺𝑥(𝑛) + 𝑘𝐺  ,               𝑛 = 0,1,2,⋯             (8) 

where ℒ𝐺 = (𝐷 − 𝐿𝐵)−1𝑈𝐵 and 𝑘𝐺 = (𝐷 − 𝐿𝐵)−1𝑐. Or,  

ℒ𝐺 = (𝐼 − 𝐿)−1𝑈, and 𝑘𝐺 = (𝐼 − 𝐿)−1𝑏. The matrix ℒ𝐺  is 
known as the Gauss-Seidel iteration matrix, whose spectral radius 
is known to be the square of the spectral radius of the Jacobian 
iteration matrix, i.e.,  

𝜌(ℒ𝐺) = 𝜇̅ 2                                                               (9) 
The iteration relation of the Successive Overrelaxation (SOR) 
method is described thus, 

𝑥(𝑛+1) = ℒ𝜔𝑥(𝑛) + 𝑘𝜔                𝑛 = 0,1,2,⋯          (10) 

for ℒ𝜔 = (𝐷 − 𝜔𝐿𝐵)−1{(1 − 𝜔)𝐷 + 𝜔𝑈𝐵}, 𝑘𝜔 = (𝐷 −
𝜔𝐿𝐵)−1𝜔𝑐. In conformity with (5), this can be written as ℒ𝜔 =
(𝐼 − 𝜔𝐿)−1{(1 − 𝜔)𝐼 + 𝜔𝑈}, 𝑘𝜔 = (𝐼 − 𝜔𝐿)−1𝜔𝑏. For the 

choice of relaxation parameter 𝜔 = 2/(1 + √1 − 𝜇̅ 2), the 

spectral radius of the SOR iteration matrix is obtainable from  

𝜌(ℒ𝜔) = [1 − √1 − 𝜇̅ 2] / [1 + √1 − 𝜇̅ 2]            (11) 

The Accelerated Overrelaxation (AOR) method introduced by 
Hadjidimos (1978) for the solution of (5) takes the form  

𝑥(𝑛+1) = ℒ𝑟,𝜔𝑥(𝑛) + 𝑘𝑟,𝜔                𝑛 = 0,1,2,⋯         (12) 

where ℒ𝑟,𝜔  being the AOR iteration matrix is defined as ℒ𝑟,𝜔 =

(𝐼 − 𝜔𝐿)−1{(1 − 𝑟)𝐼 + (𝑟 − 𝜔)𝐿 + 𝑟𝑈}, and 𝑘𝑟,𝜔 = (𝐼 −

𝜔𝐿)−1𝑟𝑏. Vatti and Mylapalli (2018) acknowledged the spectral 

radius of ℒ𝑟,𝜔 as  

𝜌(ℒ𝑟,𝜔) =

𝜇√𝜇̅ 2 − 𝜇2

√1 − 𝜇2 (1 + √1 − 𝜇̅ 2)
                           (13) 

under the restrictions 0 < 𝜇 < 𝜇̅  and 1 < 𝜇2 < √1 − 𝜇̅ 2 for 

the choices 𝜔 = 2/(1 + √1 − 𝜇̅ 2) and 𝑟 = [(1 − 𝜇2) −

√1 − 𝜇̅ 2]/[(1 − 𝜇2) (1 + √1 − 𝜇̅ 2)], where 𝜇̅ = max
𝑖

|𝜇𝑖| 

and 𝜇 = min
𝑖

|𝜇𝑖|, 𝜇𝑖  (𝑖 = 1(1)𝑛) is an eigenvalue of ℒ𝐽. 

The rate of convergence of an iterative method such as the Jacobi, 
Gauss-Seidel, SOR or AOR methods is determined by the spectral 

F
u

ll 
L

en
g

th
 R

es
ea

rc
h

 A
rt

ic
le

 

https://dx.doi.org/10.4314/swj.v20i3.39
http://www.scienceworldjournal.org/


Science World Journal Vol. 20(No 3) 2025   https://dx.doi.org/10.4314/swj.v20i3.39 
www.scienceworldjournal.org 
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)   
Published by Faculty of Science, Kaduna State University 

 

 Enhancing the Convergence Rate of a Preconditionned Accelerated 
Overrelaxation Method for Large Sparse Linear Algebraic Systems Via a Third-

Level Refinement Strategy 

1200 

radius of the associated iterative matrix. The goal in choosing an 
appropriate solver is to hand-pick a method whose associated 
matrix has a minimal spectral radius. However, the performance of 
these basic iterative methods is almost always constrained by the 
spectral radius of the associated iterative matrix, specifically when 
dealing with poorly conditioned or large systems. Hence, there is 
the need to devise ways and means of minimizing the spectral 
radius. An effective means of achieving just that is through 
preconditioning. The goal of preconditioning is to reduce the 
spectral radius of the associated iterative matrix so as to accelerate 
the convergence of the basic iterative methods. It involves the 
conversion of system (5) into the equivalent preconditioned system    

𝑃𝐴𝑥 = 𝑃𝑏                                                                       (14) 

through the application of a nonsingular matrix 𝑃 called a 
preconditioner. Some notable preconditioning advances that exist 
in the literature include Ndanusa and Adeboye (2012), Miao et al. 
(2018), Wang (2019), Faruk and Ndanusa (2019), Song (2020), 
Ndanusa et al., (2020) and Suleiman et al. (2024). Iterative 
refinement is another means of accelerating convergence of 
iterative methods for solving a linear system by performing 
iterations on the linear system whose right-hand side is the residual 
vector for successive approximations until satisfactory accuracy 
results are obtained. The refinement of AOR is obtained vide Vatti 
et al. (2018), wherein the refinement is achieved through  the 
iteration  

𝑥(𝑛+1) = ℒ𝑟,𝜔
2𝑥(𝑛) + 𝑑                                              (15) 

where ℒ𝑟,𝜔
2 = [(𝐼 − 𝜔𝐿)−1{(1 − 𝑟)𝐼 + (𝑟 − 𝜔)𝐿 + 𝑟𝑈}]2, 

𝑑 = 𝑟[𝐼 + ℒ𝑟,𝜔](𝐼 − 𝜔𝐿)−1𝑏.  Similar researches along this 

direction include Kebede (2017), Eneyew et al. (2019), Eneyew et 
al. (2020)a, Eneyew et al. (2020)b, Teklehaymanot (2021) and 
Wangwa, et al. (2025). 
 
MATERIALS AND METHODS 
The Preconditioned Linear System 
It is assumed that the coefficient matrix 𝐵 of (1) is an irreducible 

𝐿 − matrix with weak diagonal dominance. Hadjidimos (1978) 

pointed out that If 𝐵 is an irreducible matrix with weak diagonal 
dominance, then it will be nonsingular with nonvanishing diagonal 
elements. A transformation matrix 𝑃 in the sense of Abdullahi and 
Ndanusa (2020) is then applied to system (5) resulting in the 
preconditioned system   

𝐴̂𝑥 = 𝑏̂                                                                    (16) 

where 𝐴̂ = 𝑃𝐴 = (𝐼 + 𝑆̂)A, 𝑏̂ = 𝑃𝑏 = (𝐼 + 𝑆̂)𝑏. Here, 𝐼 is the 

identity matrix and 𝑆̂ has the structure defined as  

𝑆̂ =

[
 
 
 
 

0 
−𝑎21 
−𝑎31 

⋮ 
−𝑎𝑛1 

−𝑎12

0
0
⋮
0

0 
−𝑎23

0
⋮
0

⋯ 
⋯
⋯ 
⋯
⋯

−𝑎1𝑛

0
⋮

−𝑎𝑛−1,𝑛

0 ]
 
 
 
 

                           (17) 

A usual splitting of the preconditioned coefficient matrix of system 

(16) into its diagonal (𝐷̂), strictly lower (−𝐿̂) and strictly upper (−𝑈̂) 
components is obtained thus 

𝐴̂ = 𝐷̂ − 𝐿̂ − 𝑈̂                                                (18) 
System (18) has the equivalent form 

𝐴̅𝑥 = 𝑏̅                                                              (19) 

with the splitting 𝐴̅ = 𝐼 − 𝐿̅ − 𝑈̅; where, 𝐼 is an identity matrix, 

𝐴̅ = 𝐷̂−1𝐴̂ and 𝑏̅ = 𝐷̂−1𝑏̂. 
 
Third Refinement of Preconditioned AOR (TRPAOR) Method  
Arising from Vatti et al. (2018), a refinement of the AOR method is 

obtained from (19), 

(𝐼 − 𝐿̅ − 𝑈̅)𝑥 = 𝑏̅  
(𝐼 − 𝜔𝐿̅)𝑥 + 𝑟(𝐼 − 𝐿̅ − 𝑈̅)𝑥 = (𝐼 − 𝜔𝐿̅)𝑥 + 𝑟𝑏̅ 

(𝐼 − 𝜔𝐿̅)𝑥 = (𝐼 − 𝜔𝐿̅)𝑥 − 𝑟(𝐼 − 𝐿̅ − 𝑈̅)𝑥 + 𝑟𝑏̅  

(𝐼 − 𝜔𝐿̅)𝑥 = (𝐼 − 𝜔𝐿̅)𝑥 + 𝑟(𝑏̅  − 𝐴̅𝑥) 

𝑥 = 𝑥 + 𝑟(𝐼 − 𝜔𝐿̅)−1(𝑏̅  − 𝐴̅𝑥) 

Accordingly, the refinement of AOR is governed by the relation  

𝑥(𝑛+1) = 𝑥(𝑛+1) + 𝑟(𝐼 − 𝜔𝐿̅)−1(𝑏̅

− 𝐴̅𝑥(𝑛+1))                                 (20) 

The 𝑥(𝑛+1) on the right-hand side of (20) is the (n + 1)𝑡ℎ 
approximation of the AOR method applied to the system by (19). 

That is, 𝑥(𝑛+1) = ℒ𝑟,𝜔𝑥(𝑛) + 𝑟(𝐼 − 𝜔𝐿̅)−1𝑏̅ , 𝑛 = 0,1,2,⋯. 

Substituting this into (20) produces 

𝑥(𝑛+1) = ℒ𝑟,𝜔𝑥(𝑛) + 𝑟(𝐼 − 𝜔𝐿̅)−1𝑏̅

+ 𝑟(𝐼 − 𝜔𝐿̅)−1[{𝑏̅

− (𝐼 − 𝐿̅ − 𝑈̅)}(ℒ𝑟,𝜔𝑥(𝑛)

+ 𝑟(𝐼 − 𝜔𝐿̅)−1𝑏̅)] 

𝑥(𝑛+1) = ℒ𝑟,𝜔𝑥(𝑛) + 2𝑟(𝐼 − 𝜔𝐿̅)−1𝑏̅

− (𝐼 − 𝜔𝐿̅)−1[{(𝑟𝐼 − 𝑟𝐿̅ − 𝑟𝑈̅) + (𝐼

− 𝐼 + 𝜔𝐿̅ − 𝜔𝐿̅)}(ℒ𝑟,𝜔𝑥(𝑛)

+ 𝑟(𝐼 − 𝜔𝐿̅)−1𝑏̅)] 

= ℒ𝑟,𝜔𝑥(𝑛) + 2𝑟(𝐼 − 𝜔𝐿̅)−1𝑏̅ − (𝐼 − 𝜔𝐿̅)−1[(𝐼 − 𝜔𝐿̅)

− {(𝐼 − 𝑟𝐼) + (𝑟 − 𝜔)𝐿̅

+ 𝑟𝑈̅)}(ℒ𝑟,𝜔𝑥(𝑛) + 𝑟(𝐼 − 𝜔𝐿̅)−1𝑏̅)] 

= ℒ𝑟,𝜔𝑥(𝑛) + 2𝑟(𝐼 − 𝜔𝐿̅)−1𝑏̅ − [𝐼

− (𝐼 − 𝜔𝐿̅)−1{(1 − 𝑟)𝐼 + (𝑟 − 𝜔)𝐿̅

+ 𝑟𝑈̅)}][(ℒ𝑟,𝜔𝑥(𝑛) + 𝑟(𝐼 − 𝜔𝐿̅)−1𝑏̅)] 

= ℒ𝑟,𝜔𝑥(𝑛) + 2𝑟(𝐼 − 𝜔𝐿̅)−1𝑏̅ − ℒ𝑟,𝜔𝑥(𝑛) + 𝑟(𝐼 − 𝜔𝐿̅)−1𝑏̅

+ ℒ𝑟,𝜔[(ℒ𝑟,𝜔𝑥(𝑛) + 𝑟(𝐼 − 𝜔𝐿̅)−1𝑏̅)] 

= ℒ2
𝑟,𝜔𝑥(𝑛) + 𝑟(𝐼 − 𝜔𝐿̅)−1𝑏̅ + ℒ𝑟,𝜔𝑟(𝐼 − 𝜔𝐿̅)−1𝑏̅ 

𝑥(𝑛+1) = ℒ2
𝑟,𝜔𝑥(𝑛) + 𝑟(𝐼 + ℒ𝑟,𝜔)(𝐼 − 𝜔𝐿̅)−1𝑏̅          (21) 

Equation (21) defines the refinement of the AOR method for solving 

(19); where ℒ2
𝑟,𝜔 = [(𝐼 − 𝜔𝐿̅)−1{(1 − 𝑟)𝐼 + (𝑟 − 𝜔)𝐿̅ +

𝑟𝑈̅)}]2 is the iterative matrix of refinement of the AOR method. Its 
spectral radius is computed from the relation 

𝜌(ℒ2
𝑟,𝜔)

=
𝜇2(𝜇̅ 2 − 𝜇2)

(1 − 𝜇2) (1 + √1 − 𝜇̅ 2)
2                              (22) 

Building upon this, and following Assefa and Teklehaymanot 
(2021), a refinement of AOR method for the solution of (9) is 
obtained thus, 

(𝐼 − 𝐿̅ − 𝑈̅)𝑥 = 𝑏̅  
(𝐼 − 𝜔𝐿̅)𝑥 + 𝑟(𝐼 − 𝐿̅ − 𝑈̅)𝑥 = (𝐼 − 𝜔𝐿̅)𝑥 + 𝑟𝑏̅ 

(𝐼 − 𝜔𝐿̅)𝑥 = (𝐼 − 𝜔𝐿̅)𝑥 − 𝑟(𝐼 − 𝐿̅ − 𝑈̅)𝑥 + 𝑟𝑏̅  

(𝐼 − 𝜔𝐿̅)𝑥 = (𝐼 − 𝜔𝐿̅)𝑥 + 𝑟(𝑏̅  − 𝐴̅𝑥) 

𝑥 = 𝑥 + 𝑟(𝐼 − 𝜔𝐿̅)−1(𝑏̅  − 𝐴̅𝑥) 

𝑥(𝑛+1) = 𝑥(𝑛+1) + 𝑟(𝐼 − 𝜔𝐿̅)−1(𝑏̅

− 𝐴̅𝑥(𝑛+1))                          (23) 

Replacing 𝑥(𝑛+1) appearing on the right-hand side of (23) by (21), 

𝑥(𝑛+1) = ℒ2
𝑟,𝜔𝑥(𝑛) + 𝑟(𝐼 + ℒ𝑟,𝜔)(𝐼 − 𝜔𝐿̅)−1𝑏̅

+ 𝑟(𝐼 − 𝜔𝐿̅)−1[{𝑏̅

− (𝐼 − 𝐿̅ − 𝑈̅)}(ℒ2
𝑟,𝜔𝑥(𝑛)

+ 𝑟(𝐼 + ℒ𝑟,𝜔)(𝐼 − 𝜔𝐿̅)−1𝑏̅)] 
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𝑥(𝑛+1) = ℒ2
𝑟,𝜔𝑥(𝑛) + 𝑟[𝐼 + ℒ𝑟,𝜔](𝐼 − 𝜔𝐿̅)−1𝑏̅

+ 𝑟(𝐼 − 𝜔𝐿̅)−1𝑏̅ − 𝑟(𝐼 − 𝜔𝐿̅)−1(𝐼 − 𝐿̅

− 𝑈̅){ℒ2
𝑟,𝜔𝑥(𝑛)

+ 𝑟[𝐼 + ℒ𝑟,𝜔](𝐼 − 𝜔𝐿̅)−1𝑏̅} 

𝑥(𝑛+1) = ℒ2
𝑟,𝜔𝑥(𝑛) − (𝐼 − 𝜔𝐿̅)−1(𝑟𝐼 − 𝑟𝐿̅ −

𝑟𝑈̅)ℒ2
𝑟,𝜔𝑥(𝑛) + 𝑟(𝐼 + ℒ𝑟,𝜔)(𝐼 − 𝜔𝐿̅)−1𝑏̅ + 𝑟(𝐼 −

𝜔𝐿̅)−1𝑏̅ − (𝐼 − 𝜔𝐿̅)−1(𝑟𝐼 − 𝑟𝐿̅ − 𝑟𝑈̅)𝑟(𝐼 + ℒ𝑟,𝜔)(𝐼 −

𝜔𝐿̅)−1𝑏̅  

𝑥(𝑛+1) = ℒ2
𝑟,𝜔[𝐼 − (𝐼 − 𝜔𝐿̅)−1(𝑟𝐼 − 𝑟𝐿̅ − 𝑟𝑈̅)]𝑥(𝑛) + 𝑟[𝐼

+ ℒ𝑟,𝜔 + 𝐼

− (𝐼 − 𝜔𝐿̅)−1(𝑟𝐼 − 𝑟𝐿̅ − 𝑟𝑈̅)(𝐼
+ ℒ𝑟,𝜔)](𝐼 − 𝜔𝐿̅)−1𝑏̅ 

𝑥(𝑛+1) = ℒ2
𝑟,𝜔[𝐼 − (𝐼 − 𝜔𝐿̅)−1(𝑟𝐼 − 𝑟𝐿̅ − 𝑟𝑈̅)]𝑥(𝑛) + 𝑟[𝐼

+ (𝐼 + ℒ𝑟,𝜔)(𝐼

− (𝐼 − 𝜔𝐿̅)−1(𝑟𝐼 − 𝑟𝐿̅ − 𝑟𝑈̅)(𝐼
+ ℒ𝑟,𝜔))](𝐼 − 𝜔𝐿̅)−1𝑏̅ 

Note that, 

𝐼 − (𝐼 − 𝜔𝐿̅)−1(𝑟𝐼 − 𝑟𝐿̅ − 𝑟𝑈̅)
= (𝐼 − 𝜔𝐿̅)(𝐼 − 𝜔𝐿̅)−1

− (𝐼 − 𝜔𝐿̅)−1𝑟𝐼 + (𝐼 − 𝜔𝐿̅)−1𝑟𝐿̅
+ (𝐼 − 𝜔𝐿̅)−1𝑟𝑈̅ 

= (𝐼 − 𝜔𝐿̅)−1{(1 − 𝑟)𝐼 + (𝑟 − 𝜔)𝐿̅ + 𝑟𝑈̅} = ℒ𝑟,𝜔 

𝑥(𝑛+1) = ℒ2
𝑟,𝜔[ℒ𝑟,𝜔]𝑥(𝑛) + 𝑟[𝐼 + (𝐼

+ ℒ𝑟,𝜔)ℒ𝑟,𝜔](𝐼 − 𝜔𝐿̅)−1𝑏̅ 

𝑥(𝑛+1) = ℒ3
𝑟,𝜔𝑥(𝑛) + 𝑟[𝐼 + ℒ𝑟,𝜔

+ ℒ2
𝑟,𝜔](𝐼 − 𝜔𝐿̅)−1𝑏̅          (24) 

Equation (24) defines the second refinement of the AOR method 

for solving (19); where ℒ3
𝑟,𝜔 = [(𝐼 − 𝜔𝐿̅)−1{(1 − 𝑟)𝐼 + (𝑟 −

𝜔)𝐿̅ + 𝑟𝑈̅)}]3 is the iterative matrix of the second refinement of 
the AOR method. Its spectral radius is computed from the relation 

𝜌(ℒ3
𝑟,𝜔)

=

(

 
𝜇√𝜇̅ 2 − 𝜇2

√1 − 𝜇2 (1 + √1 − 𝜇̅ 2)
)

 

3

                             (25) 

Following the same procedure established by Assefa and 
Teklehaymanot (2021), a third refinement of the AOR method for 
the solution of (19) is obtained as 

𝑥(𝑛+1) = ℒ4
𝑟,𝜔𝑥(𝑛) + 𝑟[𝐼 + ℒ𝑟,𝜔 + ℒ2

𝑟,𝜔

+ ℒ3
𝑟,𝜔](𝐼 − 𝜔𝐿̅)−1𝑏̅          (26) 

with ℒ4
𝑟,𝜔 = [(𝐼 − 𝜔𝐿̅)−1{(1 − 𝑟)𝐼 + (𝑟 − 𝜔)𝐿̅ + 𝑟𝑈̅)}]4 

being the iterative matrix of third refinement of AOR method, and 
its spectral radius computed as 

𝜌(ℒ4
𝑟,𝜔)

=

(

 
𝜇√𝜇̅ 2 − 𝜇2

√1 − 𝜇2 (1 + √1 − 𝜇̅ 2)
)

 

4

                             (26) 

 
Numerical Example 
Let the coefficient matrix 𝐵 of the linear system (1) be defined as  

𝐵

=

(

 
 
 

107/112 −1/56 −337/1764
−1/36 23/24 −1/56
−1/42 −13/72 107/112

   

−1/48 −3/14 −611/3528
−1/36 −31/168 −5/24

0 −11/72 −1/6
   

 

−29/168 −23/112 −1/36
−751/4032 −19/112 −23/112

−1/48 −25/126 −29/168

 

323/336 −1/42 −337/1764
−97/576 23/24 −1/56
−3/16 −11/72 41/42 )

 
 
 

 

 
RESULTS AND DISCUSSION 
The spectral radii of the iteration matrices of Jacobi, Gauss-Seidel. 
Successive Overrelaxation (SOR), Accelerated Overrelaxation 
(AOR), Preconditioned Accelerated Overrelaxation (PAOR), 
Refinement of Preconditioned Accelerated Overrelaxation 
(RPAOR), Second Refinement of Preconditioned Accelerated 
Overrelaxation (SRPAOR), and Third Refinement of 
Preconditioned Accelerated Overrelaxation (TRPAOR) methods 
are computed alongside their convergence rates employing the 
Maple 2019 mathematical software package.  The results are 
presented in Tables 1 to 4. The following notations are adopted 
therein:  

𝜌(ℒ𝐽) = spectral radius of Jacobi iteration matrix; 𝜌(ℒ𝐺) = 

spectral radius of Gauss-Seidel (GS) iteration matrix; 𝜌(ℒ𝜔) = 

spectral radius of SOR iteration matrix; 𝜌(ℒ𝑟,𝜔) = spectral radius 

of the AOR iteration matrix; 𝜌(ℒ̅𝑟,𝜔) = spectral radius of 

Preconditioned AOR (PAOR) iteration matrix; 𝜌(ℒ2̅̅̅̅
𝑟,𝜔) = 

spectral radius of Refinement Preconditioned AOR (RPAOR) 

iteration matrix; 𝜌(ℒ3̅̅̅̅
𝑟,𝜔) = spectral radius of Second 

Refinement Preconditioned AOR (SRPAOR) iteration matrix; 

𝜌(ℒ4̅̅̅̅
𝑟,𝜔) = spectral radius of the Third Refinement 

Preconditioned AOR (TRPAOR) iteration matrix. And lastly, 𝑅(ℒ𝑥) 
refers to the rate of convergence of the iteration method whose 
iteration matrix is denoted by ℒ𝑥.  
 
Table 1     Eigenvalues, parameters and spectral radii of PAOR, 
RPAOR, SRPAOR and TRPAOR iteration matrices  

Eigenvalue
s 

Parameters Spectral radii 

𝝁 𝜇̅ 𝑟 𝜔 𝜌(ℒ̅𝑟,𝜔) 𝜌(ℒ2̅̅̅̅
𝑟,𝜔) 𝜌(ℒ3̅̅̅̅

𝑟,𝜔) 𝜌(ℒ4̅̅̅̅
𝑟,𝜔) 

0.00
271
3 

0.62
793
6 

0.12
468
8 

1.12
469
1 

0.00
095
8 

9.182093
× 10−7 

8.798580
× 10−10 

8.431084
× 10−13 

 
Table 2     Eigenvalues, parameters and spectral radii of Jacobi, 
GS, SOR and AOR iteration matrices 

Eigenvalue
s 

Parameters Spectral radii 

𝝁 𝜇̅ 𝑟 𝜔 𝜌(ℒ𝐽) 𝜌(ℒ𝐺) 𝜌(ℒ𝜔) 𝜌(ℒ𝑟,𝜔) 

0.02
547
6 

0.64
286
2 

0.132232 1.132514 0.64
286
2 

0.41
327
1 

0.13
251
4 

0.00
926
9 

 
Table 3     Convergence rate of PAOR, RPAOR, SRPAOR and 
TRPAOR methods 

𝑹(𝓛̅𝒓,𝝎) 𝑹(𝓛𝟐̅̅̅̅
𝒓,𝝎) 𝑹(𝓛𝟑̅̅̅̅

𝒓,𝝎) 𝑹(𝓛𝟒̅̅̅̅
𝒓,𝝎) 

6.950420 13.900840 20.851260 27.801680 

 
Table 4     Convergence rate of Jacobi, GS, SOR and AOR 
methods  

𝑹(𝓛𝑱) 𝑹(𝓛𝑮) 𝑹(𝓛𝝎) 𝑹(𝓛𝒓,𝝎) 

0.441824 0.883644 2.021063 4.680987 

https://dx.doi.org/10.4314/swj.v20i3.39
http://www.scienceworldjournal.org/
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Table 1 reveals that for the choices 𝑟 = 0.124688, 𝜔 =
1.124691, the third refinement of preconditioned AOR (TRPAOR) 
exhibits faster convergence than the SRPAOR, RPAOR and PAOR 

methods, i.e., 𝜌(ℒ̅𝑟,𝜔) < 𝜌(ℒ2̅̅̅̅
𝑟,𝜔) < 𝜌(ℒ3̅̅̅̅

𝑟,𝜔) <

𝜌(ℒ4̅̅̅̅
𝑟,𝜔) < 1. In Table 2, for the choices 𝑟 = 0.132232, 𝜔 =

1.132514, the classical AOR, as expected, converges faster than 

the  SOR, GS and Jacobi methods in that order, i.e., 𝜌(ℒ𝐽) <

𝜌(ℒ𝐺) < 𝜌(ℒ𝜔) < 𝜌(ℒ𝑟,𝜔) < 1. Table 3 and Table 4 

compares the rates of convergence for various methods. That is, 

𝑅(ℒ𝐽) < 𝑅(ℒ𝐺) < 𝑅(ℒ𝜔) < 𝑅(ℒ𝑟,𝜔) < 𝑅(ℒ̅𝑟,𝜔) <

𝑅(ℒ2̅̅̅̅
𝑟,𝜔) < 𝑅(ℒ3̅̅̅̅

𝑟,𝜔) < 𝑅(ℒ4̅̅̅̅
𝑟,𝜔). 

 
Conclusion 
The main goal of iteration methods for linear systems is to devise 
means and ways of reducing the spectral radius of the 
corresponding iteration matrix, which must be shown to be less 

than 1, that is, 𝜌(ℒ) < 1, where 𝜌(ℒ) = max
𝑖

|𝜆𝑖| , 𝜆𝑖  (𝑖 =

1(1)𝑛) is an eigenvalue of the iteration matrix ℒ of the 
corresponding iteration method; and the smaller it is, the faster the 
method’s rate of convergence. A combination of preconditioning 
and refinement techniques has been adopted to improve the 
convergence rate of the AOR method for solving linear systems 
with an irreducibly diagonally dominant 𝐿 −matrix coefficient 
matrix. It was established that the third refinement of 
preconditioned AOR converges approximately 23 times faster than 
the classical AOR method. 

max
𝑖

|𝜆𝑖| , 𝜆𝑖  (𝑖 = 1(1)𝑛) is an eigenvalue of ℒ 
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