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ABSTRACT  
Special-purpose compilers had been developed for specific 
problem domains, which mainly focused on improving certain 
aspects of the compiler. For instance, the NNVM compiler and the 
TensorFlow AXL compiler proffers solutions to improve the 
performance of machine learning algorithms by implementing 
parallel computing and code optimization to reduce time 
complexity. An obvious burden in data science/machine learning 
undertakings is the amount of time needed for data preprocessing. 
This study has a new look at compiler design using 
pharmacovigilance as a case study. The research developed a 
special-purpose compiler to be used in improving data 
preprocessing as applied to pharmacovigilance. Lexical analysis 
was applied to data preprocessing and hashing techniques in 
surveillance and case reporting. The dataset used in the study 
contains some demographic information of the patients, drugs 
prescribed, and reported adverse effects. The compiler was built 
using the Python programming language, and a random forest 
model was developed using 70% of the data as a training set while 
the remaining 30% was reserved for testing. The initial model 
performance in terms of accuracy in reporting adverse events was 
0.08; however, after applying hashing techniques and adding the 
hash as an additional attribute to the dataset, a 1.0 (100%) 
accuracy was achieved. 
 
Keywords: Compiler design; Pharmacovigilance; Adverse Drug 
Events (ADE); Data preprocessing; Lexical analysis; Machine 
learning; Hashing techniques 
 
INTRODUCTION 
In recent times, there has been adoption and application of 
compiler techniques in deep learning systems to achieve better 
performance, for instance, TensorFlow Accelerated Linear Algebra 
(XLA) compiler (Chris and Todd 2017; He, 2023) and the Neural 
Network Virtual Machine (NNVM) compiler (Richard et al., 2017; 
Tiwari et al., 2024). With a growing interest in the field of data 
science and Artificial Intelligence (AI), the relevance of Big Data 
cannot be overemphasized. However, despite the increased 
attention given to this aspect of technology, the problem of data 
quality and reliability persists. It is well known that 80 - 90% of the 
time spent on machine learning development is data preparation 
(Stonebraker and Rezig, 2019). This issue is common because of 
the heterogeneity of data sources, resulting in data variety (a major 
challenge of big data). As a result, compilers are being modified to 
increase performance, especially in the aspect of data 
preprocessing. 
Expert systems built on machine learning techniques rely on data 
quality to achieve their goal (Eunsuk et al., 2017; Straub, 2021). 
The challenges associated with data quality for the development of 
expert systems are encountered mostly in classification tasks in 
which the distribution of classes or labels in a given dataset is not 
uniform, and the common approach used in solving this problem is 

by oversampling or under sampling (Roweida et al., 2020). One of 
the focal points of this study is to minimize the need for data 
preprocessing by improving data quality using a compiler 
approach. 
The use of data mining and machine learning for drug safety 
surveillance in the field of clinical pharmacology is gaining more 
attention (Bete et al., 2018). However, just like other expert 
systems that rely on a variety of data, there is a problem of data 
quality and a high need for data preprocessing (Stonebraker and 
Rezig, 2019). This data is usually collected from doctors and 
pharmacists in a health care facility. The main drawback of this data 
is that its correctness has to be checked, as there may be some 
interrelated issues such as duplications and so on (Budach et al., 
2022; Harpaz, 2016).  
There is a clear attention to the usefulness of Artificial Intelligence 
and Machine learning in pharmacovigilance (PV) (Murali et al., 
2019; Hussain et al., 2021; Sessa, 2021). The kind of data needed 
to be processed for PV is diverse and varies greatly in terms of 
quality and quantity. Data from the Individual Case Study Report 
(ICSR) should be consistent with the data from the clinical trial, but 
this is not true in reality (Sessa, 2021). Obtaining the right report 
from patients, caregivers, or Health Care Professionals is 
inherently complicated. Medical Literature Monitoring (MLM), which 
is peer-reviewed, is another important source of safety data, and 
the peer-review method should assure the data's credibility. 
However, the information supplied is typically limited to what is 
found in the paper. 
Social media provides a huge amount of PV data, which cannot be 
verified easily. It has been proven that data, which can be relevant 
for PV purposes, are more reliable when they emanate from private 
media platforms dedicated to Health Practitioners (for instance, 
online professional communities) than those obtained from open 
platforms like Facebook and Twitter, where everyone can make 
posts (Sessa, 2021). This clearly shows that having a divergent 
data source for pharmacovigilance purposes presents integrity 
concerns. In fact, some of the data gotten from social media is 
either false or even willfully misleading. 
Wearable Devices (Fitbits, Garmins, iPhones, etc.) that can 
generate millions or billions of data points about heart rate, 
sleep/wake patterns, activity, and, in some cases, oxygen 
saturation and blood sugar can provide a reliable source of data. 
The Apple watch, released in 2018, Electrocardiography ECG App 
is an example of a wearable device that is a more reliable data 
source for PV. Needless to say, this approach has sparked a lot of 
debate and the writing of several papers on the pros and cons of 
using such devices (L'Hommedieu et al., 2019; Perez et al., 2019; 
Whelan et al., 2019). 
The fundamental issue in machine-aided PV case processing, as 
in many other fields where natural language is used, is that the data 
to be processed might be both structured and unstructured, 
requiring separate processing and analysis (Marco et al.,2021). A 
tremendous amount of time and effort is being spent on data 
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preprocessing (Stonebraker and Rezig, 2019). Well-labeled data 
can be obtained from relational databases and thus provides little 
or no preprocessing challenge. However, data captured as 
narratives are unstructured and pose a greater challenge during 
preprocessing because the relevant information may be hidden 
deeply within the message or may not exist; in both cases, there 
would be a dissipation of energy for preprocessing. Sometimes 
unstructured data is even more complicated because of wrong 
spellings and abbreviations, for instance, a typical Facebook post 
or a Twitter post. The more unstructured the data, the more 
“intelligence” is required to process it in a meaningful way (Wong, 
2018). 
Another important concern is data veracity. Having a variety of PV 
data from different sources poses a challenge of acceptability and 
of the authenticity of the data source. Even where there is success 
in preprocessing, meaningful inferences can only be drawn from a 
legitimate data source (entries from professional or first-hand from 
caregiver or patient experiencing Adverse Drug Events, ADE). 
 
MATERIALS AND METHODS 
The system contains two major aspects which are the lexical and 
syntax analysis (compiler approach) aspect for tokenization of 
prescription records and the machine learning (ML) aspect, which 
performs the pharmacovigilance and renders real-time feedback to 
the dashboard. The concept of the system is similar to outlier 

detection but in this case, the outliers are unprecedented adverse 
drug reactions that require further investigation and, in some cases, 
immediate intervention. In the compiler design stage, a syntax tree 
containing grammatical rules would be created, which defines 
acceptable expressions with their respective inferences. Regular 
expression (ReGex) would be used to define acceptable tokens. 
The preceding step is the creation and deployment of the 
surveillance reporting system, which would be the primary input 
source of adverse drug reactions in the system. Every entry would 
be organized into a single code and hashed. The code and the 
hashes would be routed into the pharmacovigilance repository, 
where the intelligent agent would classify such an entry for 
analysis. The idea of classification is to identify anomalies in the 
surveillance report and flag off for the system. The compiler would 
be used to tokenize input from the surveillance system to provide 
high-precision data from which error tokens can be identified, which 
constitute interesting cases, and thus, drug batch numbers, when 
identified, can be reported for immediate action. The compiler 
approach is considered in this study to be superior to NLP because 
of the concept of optimization, which is fundamentally performance-
oriented in terms of processing needs and also as a result of 
tokenization, which directly aligns with breaking down components 
of a typical prescription (drug, dosage, frequency, and route of 
administration) (Kovac et al., 2022). 
 

 

 
Figure 1: The system architecture (showing compiler phases and 

machine learning phases) 
 
Figure 1 shows the design and implementation flow for all the 
stages. The lexical analyzer defines the acceptable tokens in the 
system, which are standard drug abbreviations, dosage forms, and 
adverse symptoms. These form the basis for developing 
grammatical rules, a process for the development of a syntax tree. 
These form the building block for the compiler. The 
pharmacovigilance reporting system contains input forms where 
reporting actors input the details obtained from the patient. These 
details are converted into a more precise format in a process known 
as tokenization. Each entry is termed a ‘capsule’, a special term 
used in this study to describe a tuple of a surveillance unit, including 
its respective hash and other medical, demographic, and 
supporting details provided during PV reporting. A capsule is the 
basic unit (row) that forms the input for the machine learning. The 
ML uses clustering and classification to create the ML agent, which 
is responsible for isolating interesting cases that form the focal 
input for pharmacovigilance (examples of interesting cases are 
new adverse effects or unexpected drug reactions, including drug-
drug interactions). After successful case selection, the Capsules 
selected are used to create more informed feedback, which can be 
used by the professionals for immediate action where needed. This 
can reveal unsuspecting hidden patterns for the pharmacovigilance 

reporting system, which is not easily obtainable in a manual 
system. 
 
Description of the dataset and the data source  
In order to achieve the implementation as described in the 
methodology of this study, the datasets were downloaded from the 
preceding links provided and explored in the Jupiter notebook 
environment. Below are several outputs generated from the data 
set. One of the important aspects of this data set is the various 
attributes that are relevant to the study, for instance, drug name, 
medical condition, and normal symptoms. Normal symptom is 
expected symptoms based on the pharmacology of the drugs, 
which form the basis for the surveillance report in which the 
compiler identifies any symptom that is not listed as part of the 
normal to be flagged as a potential unprecedented adverse effect, 
which is needed for further investigation. From the unprecedented 
symptoms, the compiler will produce tokens that are 
representatives of the drug and the side effects; these tokens will 
provide independent entities that will be further analyzed to reveal 
insights. 
Data source = 
https://www.kaggle.com/datasets/jithinanievarghese/drugs-side-
effects-and-medical-condition?resource=download 

 
Figure 2: First five records from the dataset 
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RESULTS 
Table I: Evaluation Scores for both control and test 

 Accuracy 
Score 

Precisio
n 

Recall F1-
score 

AUC 

Contro
l set 

0.0841666
6 

0.0842 0.132
5 

0.103
6 

0.217
4 

Test 
set 

1.000 1.000 1.000 1.000 1.000 

 
Table I shows that the hash attribute contributed immensely in 
improving the performance of the decision tree model. To further 
explain the outcome, a confusion matrix in Figure 2 was used to 
present the outcome of the test set with detailed performance 
matrices. Specifically, presenting perfect accuracy, precision, 
recall, f1-score, and AUC as presented in the table. The dramatic 
jump in performance can be explained by the normalization of the 
dataset, with hashing that gives a very precise reference that 
encapsulates all the nuances in the raw data. 
With reference to the objectives of the study, the entire spectrum 
proposed by the system was performed. The compiler process 
ensured that input files were read using the lexical structure 
defined, and the parsing procedure ensured that accurate 
grammatical rules were followed. The compiler was instrumental in 
the data preprocessing process to ensure that attributes of the 
input set were verified and validated before invoking the hashing 
algorithm. The output, a CSV file which contains medical diagnosis, 
age, gender, and reported drug side effects, was primary, and the 
hash of values was appended as additional variables. Two sets of 
the dataset were defined as control (containing age and gender as 
a training subset) and test, which contains the hash attribute in 
addition. A decision tree model was used in both cases, with drug 
side effects as the outcome variable. Accuracy scores of 0.084 and 
1.00 were the result of the control and the test sets, respectively 
(Fig. 2), showing that the compiler-based approach and hashing 
technique provide optimal performance for machine learning as 
well as better outcomes in pharmacovigilance surveillance 
systems. 
 

 
Figure 1: Confusion Metrix 

 
DISCUSSION 
The current dispensation of information and communication 
technology, powered by the field of computer science, invokes a 
trend of disruptive innovations. This spans through all levels of 
computational sciences and paves the way for adopting 

fundamental principles of computer science, one of which is the 
old, good compiler construction. The advancing field of data 
science has applied compiler techniques in improving processes 
and procedures, notably, the TensorFlow XLA compiler (Leary, 
2017) and the NNVM compiler (Richard, 2017).  
These solutions focused on performance optimization in terms of 
processing time and storage. This study considers the applicability 
of compiler techniques in the area of data preparation, which 
provides an opportunity for innovation because, according to 
Stonebraker (2019), data processing consumes over 80% of the 
time required for data science and machine learning projects. To 
put this study into a better perspective, pharmacovigilance was 
used as a case study. This case study was suitable because 
pharmacovigilance datasets are varied and intricate details could 
lodge within a highly unstructured dataset (Marco,2021). 
A compiler was developed using Python programming language to 
perform lexical analysis of text files and other flat files in order to 
develop a more comprehensive CSV file to be used for machine 
learning and pharmacovigilance purposes. The compiler also 
invoked a hashing function to create additional attributes that easily 
map specific attributes of a precise reported symptom. The 
outcome of the study shows that the compiler approach aided data 
preprocessing and also yielded higher accuracy when tested using 
a decision tree model. 
The study is limited by time and resources to deploy the solution 
for real-time testing. However, within the scope of the study, the 
outcome of the study is a step-in compiler-based disruptive 
innovations. The compiler technique is fundamental to computer 
science and should be considered alongside data structures, 
algorithm optimization and memory management in revolutionizing 
computational sciences amidst the ever-dynamic disruptions 
today. Due to the fact that data preprocessing consumes a huge 
fraction of the machine learning cycle, there should be automation 
of the process. This study shows that a compiler approach to data 
preprocessing can improve the accuracy score of models in 
addition to a more precise visualization during data exploration. 
More investment of time and technical resources can aid in 
achieving an optimal industry-specific computational solution that 
can advance humanity as a whole. 
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