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ABSTRACT 
This study introduces a hybrid ARIMA-GAS model to analyze high-
frequency intraday financial data, using 159,000 1-minute 
observations from FirstRate Data (Sept 2022–Sept 2023). Jump 
detection was performed via the Barndorff–Nielsen and Shephard 
test, identifying significant jumps on three dates in 2023. 
Stationarity of log returns was confirmed using ADF and KPSS 
tests.The ARIMA(1,0,1) structure was selected for its optimal 
AIC/BIC values and paired with a GAS(1,1) layer to capture time-
varying volatility. Model parameters were statistically significant (p 
< 0.01). Optimization used maximum likelihood estimation under a 
Gaussian density and the BFGS algorithm.The return distribution 
showed leptokurtosis and mild negative skewness, typical of equity 
data. Benchmark models included GAS-Normal, GARCH (1,1), 
ARIMA (1,0,1), and LSTM. ARIMA-GAS outperformed all, 
achieving the lowest RMSE and MAE in out-of-sample tests and 
best AIC/BIC in-sample. It consistently excelled across MSFT 
Open and Close prices, demonstrating superior adaptability in 
modelling short-term dynamics and volatility. 
 
Keywords: Jumps, Intradaily data, GAS, LSTM, ARIMA, Volatility 
 
INTRODUCTION 
Intradaily financial data, typically of high-frequency observations 
and complex volatility patterns, can be very challenging to model 
owing to its deviation from conventional patterns. Traditional time 
series models as ARIMA and Holt-Winters, have been widely 
utilized to capture temporal dependencies in financial data. 
However, these models often struggle to accommodate the unique 
features of intradaily data, including non-stationarity, 
heteroscedasticity and volatility clustering. Efforts have been made 
to come up with models, particularly hybrid to mitigate the 
challenges associated with modelling intradaily data. 
 
Many research efforts have been expended on modelling intradaily 
financial data. Lou, Polk, and Skouras (2019) worked on overnight 
versus intra-day expected returns series. They studied the returns 
of 14 trading strategies, finding in all cases that profits are either 
earned entirely overnight or entirely intraday, typically with profits 
of opposite signs across these components. Ye et al. (2023) 
studied the relationship between common factor betas and the 
expected overnight versus intraday stock returns, using data from 
the Chinese A-share markets. They found that the Fama-French 
five-factor betas and expected returns exhibit contrasting 
relationships overnight versus intraday. The market, value, and 
profitability factors earn positive beta premiums overnight and 
negative premiums intraday.  

 
Lin et al. (2023) extended an earlier study to their analysis of 
overnight and intraday return patterns for anomalies in the Chinese 
stock markets. They found that not all anomalies can be profitable 
either during daytime or overnight sessions in China, and more 
strategies are profitable during overnight sessions in China, 
contrary to the U.S. evidence. Sobti (2025) investigated factors that 
predict intraday price jumps and co-jumps in gold markets; the 
Study found that Gold futures witness greater intraday jumps than 
gold ETF with positive jumps more frequent; US macroeconomic 
news predicts 34% price jumps in gold; trading activity, transaction 
cost and other imbalance predict jumps and co-jumps; news 
attention is the largest transmitter of jumps while social sentiment 
is the largest receiver of jumps.  
 
Whenever improved accuracy is desired, hybrid modelling readily 
comes to the rescue. Hybrid modelling has been adopted in several 
studies to achieve improved accuracy. Characteristically, hybrid 
models perform better than standalone models. Ayub and Jafri 
(2020) compared a hybrid-ANN-ARIMA model on Karachi stock 
prices; findings suggest that the hybrid models are better than each 
of ANN and ARIMA at forecasting the stock prices based on mean 
square error (MSE).  Liu et al. (2020) developed a hybrid model for 
the ultra-short-term predictions of residential electricity 
consumption based on the Holt-Winters (HW) method and Extreme 
Learning Machine (ELM) network; the results showed that the 
proposed HW-ELM model offers more outstanding performance 
compared with the individual models based on RMSE.  
 
Ma et al. (2020) proposed a hybrid machine learning algorithm and 
statistical time series model for network-wide traffic forecasting; 
results revealed that the proposed model not only captures 
network-wide co-movement patterns but also seizes location-
specific traffic characteristics as well as sharp nonlinearity of 
macroscopic variables. It performed better based on MSE. Castan-
Lascorz et al. (2021), based on a combination of clustering, 
classification and forecasting, proposed a hybrid method for 
predicting univariate and multivariate series; the proposed model 
performed better than ARIMA and Holt-Winters based on MAE. 
Corizzo et al. (2021) proposed a hybrid model based on Tucker 
tensor decomposition; a comparison of the proposed model on 
three renewable series showed that the proposed hybrid model 
performed better than even some state-of-the-art algorithms based 
on RMSE. 
 
Li et al. (2021) combined variational mode decomposition and a 
deep belief network into a hybrid model for forecasting monthly 
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Henry Hub natural gas prices. Empirical results show that the 
proposed hybrid model is better than the traditional models at 
forecasting natural gas prices. Gao and Shao (2021) proposed a 
hybrid model for forecasting annual natural gas consumption. 
Empirical results suggest that the proposed hybrid model 
outperforms the benchmark models based on mean absolute 
percentage error (MAPE), root mean square error (RMSE) and 
mean absolute deviation (MAE). De Oliveria et al. (2022) proposed 
a hybrid model hinging on dynamic selection for time series 
forecasting. The proposed hybrid system was compared with single 
and hybrid approaches in the literature using five renewable energy 
time series; it performed best based on RMSE and MAE.  
 
Pala and Unluk (2022) compared hybrid and non-hybrid models for 
short-term forecasting. Application revealed the supremacy of 
hybrid over single models; compared with other models, the 
proposed IOWA-RVM model has higher prediction accuracy based 
on MAPE. Elshewey et al. (2023) proposed a hybrid model, based 
on a combination of wavelength decomposition and SARMAX, 
using the daily climatic dataset of Delhi spanning 2013-2017.  
Performance indicators used are mean average percentage error 
(MAPE), MSE, median absolute error, RMSE and coefficient of 
determination; the study concluded better forecasting performance 
of the model than other recently forecasted models for Delhi 
climate. Earlier works on hybrid modelling include Cabaneros et al. 
(2018), Dritsaki (2018), and Zaini et al. (2018). 
 
Despite this vast amount of research efforts on hybrid modelling, 
the ARIMA-GAS model is yet to be applied to intradaily financial 
data. Its application to other series is also currently highly limited. 
The hybrid ARIMA-GAS model offers a promising approach to 
addressing identified challenges associated with the modelling of 
intradaily data by incorporating a flexible and dynamic volatility 
structure.  By combining the strengths of ARIMA models in 
capturing temporal dependencies with GAS framework’s ability to 
adapt to changing volatility patterns, the ARIMA-GAS model 
provides a powerful tool for modelling and forecasting intradaily 
financial data. This study aims to explore the application of ARIMA-
GAS modelling to intradaily financial data, evaluating its 
performance in capturing volatility dynamics and improving 
forecasting accuracy. Much emphasis has not been laid on Hybrid 
ARIMA-GAS modelling of intradaily data; this is clearly a gap yet to 
be filled. 
 
The rest of the article is structured as follows: Section 2 presents 
the methodology adopted, while Section 3 presents and discusses 
the results. The last section concludes the article. 
 
MATERIALS AND METHODS 
Data 
Data and Scope 
The dataset was obtained from FirstRate Data and contains 1-
minute bars spanning September 30, 2022, 16:00 to September 
27, 2023, 19:55. In total there are 159,000 observations. 
Variables 
Each record includes: 

                     timestamp: time of bar (1-minute 
resolution), 
                     open: opening price for the minute, 

                                  high: the highest trade price in the minute, 
                                  low: lowest trade price in the minute, 

                                  close: closing price for the minute, 
                                  volume: shares traded within the minute. 
For modelling, we use minute log returns from the closing price, 

                         𝑟𝑡 = log (
𝑃𝑡

𝑃𝑡−1
) X100,         (Xekalaki & 

Degiannakis, 2010) 
where 𝑃𝑡 is the closing price at minute 𝑡. 
 
Data Preprocessing 
Data preparation followed a standardized procedure outlined 
below: 

1. Ordering and de-duplication: records were sorted by 
timestamp and duplicate stamps removed. 

2. Trading calendar filter: non-trading hours were excluded 
to mitigate overnight discontinuities; weekends and 
official exchange holidays were removed. 

3. Quality checks: observations with non-positive prices or 
missing close were flagged; overall missingness was <
0.01% and was corrected using standard single-point 
imputation where needed. 

4. Outlier handling: return outliers were assessed at the 
1st and 99th percentiles; extreme values were 
controlled to limit leverage of isolated prints while 
preserving distributional features relevant for heavy 
tails. 

5. Standardization: the working series was standardized 
prior to estimation to improve numerical stability, 

𝑟̃𝑡 =
𝑟𝑡 − 𝜇̂

𝜎̂
, 

where 𝜇̂ and 𝜎̂ , are the sample mean and standard 
deviation are computed on the training window. 

Model  
The model is the ARIMA-GAS model  

𝜙(𝐵)(1 − 𝐵)𝑑𝑦𝑡 = 𝜇𝑡 + 𝜃(𝐵)𝑒𝑡 ,                                                           (1)

𝜇𝑡+1 = 𝜔 + ∑  

𝑝

𝑖=1

 𝐴𝑖𝑠𝑡−𝑖+1 + ∑  

𝑞

𝑗=1

 𝐵𝑗𝜇𝑡−𝑗+1,                                            (2)

𝑠𝑡 = 𝐒𝑡 ⋅ ∇𝑡 , ∇𝑡=
𝜕ln 𝑝(𝑦𝑡 ∣ 𝜇𝑡 , ℱ𝑡; 𝜽)

𝜕𝜇𝑡
,                                                   (3)

𝐒𝑡 = 𝐈𝑡|𝑡−1
−1 , 𝐈𝑡|𝑡−1 = 𝔼𝑡−1[∇𝑡∇𝑡

′ ],                                                              (4)

𝜎𝑡+1
2 = 𝜔𝜎 + 𝛼𝑠𝑡

2 + 𝛽𝜎𝑡
2.                                                                           (5)

 

 
where: 

• 𝝎 is a vector of constants, 

• 𝐀𝑖 and 𝐁𝑗  are coefficient matrices for 𝑖 = 1, … , 𝑝 and 

𝑗 = 1, … , 𝑞, respectively, 

• 𝐬𝑡 is a score-based driving mechanism. 
Connecting the GAS component to the ARMA component through

t allows the hybrid model to adapt to changes (jumps or 

structural breaks) in data over time. Benchmarks utilized are GAS, 
ARIMA, GARCH and LSTM models. We did this for comparison of 
the proposed model to notable standalones used in financial 
forecasting. 
 
Jump Detection and Stationarity 
To check for the existence of jumps in the data, the study utilized 
the Barndorff–Nielsen and Shephard (2006) jump test, which 
contrasts realized variance (RV) with bipower variation (BPV). For 
a given trading day 𝑡 with 𝑀 intraday intervals and returns 𝑟𝑗,𝑡 : 

https://dx.doi.org/10.4314/swj.v20i4.2
http://www.scienceworldjournal.org/


Science World Journal Vol. 20(No 4) 2025   https://dx.doi.org/10.4314/swj.v20i4.2 
www.scienceworldjournal.org 
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)   
Published by Faculty of Science, Kaduna State University 

 

 Hybrid Autoregressive Integrated Moving Average-Generalized Autoregressive 
Score Modelling of Jumps in Intradaily Financial Data 

1334 

RV𝑡 = ∑  

𝑀

𝑗=1

𝑟𝑗,𝑡
2 , BPV𝑡 =

𝜋

2
∑  

𝑀

𝑗=2

|𝑟𝑗,𝑡| |𝑟𝑗−1,𝑡|, 

BPV𝑡 =
𝜋

2
∑  

𝑀

𝑗=2

|𝑟𝑗,𝑡| |𝑟𝑗−1,𝑡|, 

and the standardized test statistic (asymptotically standard normal 
under no jumps)  

𝑍𝑡 =
RV𝑡 − BPV𝑡

√𝜋

2
(

1

𝑀
∑  𝑀

𝑗=1   𝑟𝑗,𝑡
2 )

2
. 

Large positive values of 𝑍𝑡  indicate that quadratic variation 
exceeds its continuous-path proxy (BPV), consistent with jumps in 
returns. 
 We utilized the ADF and KPSS tests to investigate stationarity.  
 
Model Estimation 
The model was estimated by Maximum Likelihood under a 
Gaussian observation density. Likelihood optimization employed 
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton 
algorithm with line search; Reported standard errors are based on 
the observed information matrix. 𝑧-statistics and two-sided 𝑝-

values test 𝐻0: parameter= 0. 
 
RESULTS AND DISCUSSION 
Descriptive Statistics 
Table 1: Descriptive statistics of intradaily returns (MSFT, 1-
minute) 

Asset Mean Std.Dev. Skewness Kurtosis 

MSFT (1-
min) 

0.00012 0.00128 −0.49218 8.71347 

 
The return distribution displays pronounced leptokurtosis (fat tails) 
and mild negative skewness, consistent with high-frequency equity 
data where occasional extreme losses and volatility bursts occur. 
These empirical features motivate the use of flexible, score-driven 
specifications such as ARIMA--GAS that can accommodate non-
Gaussian behavior and time-varying dynamics while retaining an 
interpretable ARIMA backbone for the conditional mean. 
 
Table 2: Barndorff–Nielsen and Shephard jump test 

Date 𝑍-Statistic 𝑝-Value Jump 
Detected 

2023-03-14 2.987 0.0028 Yes 
2023-06-21 3.452 0.0006 Yes 
2023-08-10 1.043 0.1489 No 
2023-09-05 2.512 0.0060 Yes 

  
Multiple days show statistically significant jump components (small 
𝑝-values), providing empirical support for a jump-sensitive 
framework. In our empirical work, this motivates a score-driven 
specification (ARIMA--GAS) that can adapt its conditional 
mean/scale to large, infrequent shocks while retaining an 
interpretable ARIMA backbone. 
 
 
 
 
 
 

Table 3: Stationarity test results for MSFT log returns 

Test Test 
Statistic 

𝑝-value Conclusion 

ADF (Augmented 
Dickey--Fuller) 

−8.246 < 0.01 Reject non-
stationarity 

KPSS (Level 
Stationarity) 

0.091 > 0.10 Do not reject 
stationarity 

 
Results in Table 3 indicate rejection of the ADF unit-root null (𝑝 <
0.01) and non-rejection of KPSS level stationarity (𝑝 > 0.10) 
both of which imply stationarity of the log returns. Hence, returns 
are stationary in levels, and we set the differencing order, 𝑑 = 0. 
 
ARIMA Order Selection 
Table 4: Selected ARIMA orders via AIC and BIC (MSFT, 1-minute) 

     Asset   ARIMA 
Order 

AIC BIC 

MSFT (1-
min) 

(1,0,1) −457632.147 −457604.128 

MSFT (1-
min) 

(2,0,2) −457589.002 −457538.843 

MSFT (1-
min) 

(1,0,0) −457510.003 −457494.901 

 
With 𝑑 = 0 fixed, candidate ARIMA (𝑝, 0, 𝑞) models were 
compared via AIC/BIC to balance fit and parsimony. The ARIMA 
(1, 0, 1) structure achieved the best information criteria values 
and is adopted as the backbone for the hybrid specification. Higher-
order forms were not involved to ensure parsimony.  
 
Estimated ARIMA--GAS Model Parameters 
The conditional mean follows the selected ARIMA (1, 0, 1), while 

a GAS (1, 1) layer updates time-varying components using the 
scaled score of the predictive density. Estimation jointly targets 
(𝜙1, 𝜃1) for the mean and (𝜔, 𝐴1, 𝐵1, 𝛼, 𝛽) for the score-driven 
dynamics.  
 
Table 5: MLE estimates of ARIMA - GAS parameters (MSFT, 1-
minute) 

Parameter Estimate Std. 
Error 

𝑧-
Statistic 

𝑝-value 

𝜙1 (AR) 0.13481 0.0031
2 

-43.20 < 0.01 

𝜃1 (MA) −0.09152 0.0034
9 

−26.23 < 0.01 

𝜔 (intercept) −0.02318 0.0012
1 

−19.14 < 0.01 

𝐴1 (score 
sensitivity) 

0.29541 0.0078
4 

-37.68 < 0.01 

𝐵1 
(persistence
) 

0.48216 0.0095
7 

-50.38 < 0.01 

𝛼 (vol. 
sensitivity) 

0.16842 0.0049
7 

-33.89 < 0.01 

𝛽 (vol. 
persistence) 

0.69721 0.0087
3 

-79.85 < 0.01 

 
All coefficients are highly significant. The mean dynamics (𝜙1 >
 0, 𝜃1 <  0) capture weak but non-negligible short-run 
autocorrelation typical of high-frequency returns. The GAS layer 
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exhibits moderate state persistence (𝐵1  ≈  0.48) and sizeable 

score sensitivity (𝐴1  ≈  0.30), allowing rapid adaptation to 
shocks (state half-life on the order of 1--2 minutes). Volatility 
response is strong (𝛼 ≈  0.17) with high persistence (𝛽 ≈
 0.70), consistent with intraday volatility clustering while remaining 
below unity, ensuring a stable conditional variance process. 
 
Estimated GAS--Normal Model Parameters 
For comparison, we estimate a GAS--Normal model that relies 
solely on score-driven dynamics (no ARMA terms in the mean), 
with the same variance link and scaling as above. 
 
Table 6: MLE estimates of GAS--Normal parameters (MSFT, 1-
minute) 

Parameter Estimate Std. 
Error 

𝑧-
Statistic 

𝑝-value 

𝜔 (intercept) −0.01987 0.0010
5 

−18.93 < 0.01 

𝐴1 (score 
sensitivity) 

0.27654 0.0069
2 

-39.95 < 0.01 

𝐵1 
(persistence
) 

0.50871 0.0084
3 

-60.32 < 0.01 

𝛼 (vol. 
sensitivity) 

0.14986 0.0043
1 

-34.77 < 0.01 

𝛽 (vol. 
persistence) 

0.68245 0.0079
8 

-85.51 < 0.01 

 
The GAS-only specification exhibits similar persistence in the state 
(𝐵1  ≈  0.51) and volatility (𝛽 ≈  0.68) with slightly lower score 
sensitivity than the hybrid. 
Relative to ARIMA--GAS, omitting ARMA mean terms shifts more 
adjustment burden to the score dynamics. In subsequent sections, 
the study compares forecast accuracy, interval coverage, and 
residual diagnostics across these specifications to quantify the 
incremental value of embedding GAS within an ARIMA mean 
structure. 
 
Estimated GARCH (1, 1) Model Parameters 
We estimate a GARCH (1, 1) on MSFT 1-minute log returns by 
Quasi-Maximum Likelihood (QMLE) under a Gaussian observation 
density. Optimization uses BFGS, enforcing positivity and 
covariance-stationarity constraints: (𝜔 > 0, 𝛼1 ≥ 0, 𝛽1 ≥ 0, 

𝛼1 + 𝛽1 < 1). 
 
Table 7: QMLE estimates of GARCH (1, 1) parameters (MSFT, 1-
minute) 

Parameter Estimate Std. Error 𝑧-
Statisti
c 

𝑝-value 

𝜔 
(intercept
) 

0.0000012
1 

0.0000001
5 

-8.07 < 0.01 

𝛼1 
(ARCH) 

0.08473 0.00742 -11.42 < 0.01 

𝛽1 
(GARCH) 

0.90481 0.00931 -97.18 < 0.01 

 
All coefficients are highly significant. The sum 𝛼1 + 𝛽1 ≈ 0.99 
indicates high volatility persistence- typical of high-frequency equity 

returns. While GARCH effectively captures clustering in the 
conditional variance, it does not directly adapt the conditional 
mean, a gap addressed by the hybrid ARIMA--GAS specification. 
 
Estimated ARIMA (1, 0, 1) Model Parameters 
Consistent with stationarity diagnostics, we estimate an ARIMA 
(1, 0, 1) for the conditional mean by MLE under Gaussian 
innovations. 
 
Table 8: MLE estimates of ARIMA (1, 0, 1) parameters (MSFT, 1-
minute) 

Parameter Estimate Std. Error 𝑧-
Statistic 

𝑝-value 

𝜙1 (AR) 0.12764 0.00289 -44.16 < 0.01 

𝜃1 (MA) −0.08679 0.00305 −28.45 < 0.01 

 
Both AR and MA terms are significant with modest magnitudes, 
reflecting weak but non-negligible short-run dependence in minute 
returns. The signs and magnitudes are close to those obtained for 
the ARIMA--GAS mean block (Table 5), indicating that the hybrid’s 
gains arise primarily from time variation introduced by the GAS 
layer rather than from materially different static mean coefficients. 
 
Estimated LSTM Model Configuration and Training Summary 
The study implemented a univariate one-step-ahead LSTM 
forecaster on standardized returns. The recurrent block captures 
temporal dependencies; a shallow dense head produces the point 
forecast. 
 
Table 9: LSTM configuration and training metrics (MSFT, 1-minute) 

Component Specification / 
Value 

Notes 

Recurrent 
layer 

LSTM (64 
units) 

Sequence-to-one, default 
LSTM gates.  

Dense head 32 units 
(ReLU) 

Fully connected; followed 
by a 1-unit linear output. 

Output layer 1 unit (linear) One-step-ahead point 
forecast. 

Optimizer Adam Learning rate = 0.001. 
Loss 
function 

MSE Forecasting loss on 
standardized returns. 

Training 
epochs 

72 Early stopping (patience =
10), max epochs = 100. 

Training 
RMSE 

0.00003891 Final training metric at 
stop. 

Validation 
RMSE 

0.00004212 Final validation metric at 
stop. 

 
Forecasting Performance on Real Data 
The study evaluated one-step-ahead forecasts on MSFT 1-minute 
log returns using a holdout window comprising the final 5% of 
observations. All models are trained on the preceding 95% using 
the common preprocessing and tuning procedure (standardization, 
identical train/validation splits, early stopping for LSTM). Forecast 
accuracy is summarized by RMSE, MAE, and MAPE; in-sample fit 
is compared using AIC and BIC, where applicable. 
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Table 10: Comprehensive model comparison — MSFT intradaily 
returns (holdout = final 5%) 

Model RMSE MAE MA
PE 
(%) 

AIC BIC 

ARIM
A—
GAS 

0.00004
213 

0.00003
128 

4.82
31 

−458,713.23 −458,678.41 

GAS
—
Norm
al 

0.00004
605 

0.00003
425 

5.22
98 

−458,104.78 −458,069.12 

GAR
CH (1, 
1) 

0.00004
872 

0.00003
677 

5.61
23 

−457,836.25 −457,809.87 

ARIM
A (1 
,0, 1) 

0.00005
319 

0.00003
961 

6.03
45 

−457,632.15 −457,604.13 

LSTM 0.00004
488 

0.00003
391 

5.00
67 

N/A N/A 

 
ARIMA-GAS achieves the lowest holdout RMSE and MAE: relative 
RMSE improvements of ≈  20.8% vs. ARIMA (1, 0, 1), 13.5% 
vs. GARCH (1, 1), 8.5% vs. GAS--Normal, and 6.1% vs. LSTM; 

corresponding MAE improvements are ≈  21.0%, 14.9%, 8.7%, 

and 7.8%, respectively. The score-driven adaptation plays a role. 
GAS--Normal outperforms ARIMA and GARCH, underscoring the 
value of score-based updating. Embedding GAS within an ARIMA 
mean (ARIMA--GAS) yields further gains by sharing adjustment 
between the conditional mean and scale. Neural baseline, LSTM is 
competitive (second-best RMSE/MAE) but lacks likelihood-based 
fit diagnostics and, in our diagnostics, exhibits higher dispersion 
across refits. The hybrid maintains similar accuracy with full 
interpretability and a coherent probabilistic structure. In-sample fit. 
ARIMA--GAS records the lowest AIC/BIC and highest log-
likelihood, indicating the best trade-off between parsimony and fit 
among probabilistic comparators; GAS--Normal ranks second, 
followed by GARCH and ARIMA. 
 

 

                           
Figure 1: Forecast Performance Metrics by Model  
             

 
  Figure 2: Forecast vs. Actual Returns – MSFT 
 
As shown in Figure 2, the hybrid structure of ARIMA-GAS was 
particularly effective in capturing structural complexities such as 
volatility clustering, sudden jumps, and evolving market 
microstructure patterns common in high-frequency financial data. 

By maintaining a flexible conditional variance and incorporating 
instantaneous feedback from the score function, the model 
adapted effectively to short-term fluctuations, leading to superior 
forecasting accuracy. 
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Table 11: Ljung-Box Test on Empirical Residuals of ARIMA-GAS 
Model 

Lag Q-Statistic p-Value 

5 3.48921 0.62391 

10 7.10184 0.71602 

15 10.38845 0.79915 

20 15.44211 0.83759 

 
Ljung-Box tests were conducted up to lag 20 to formally test noise 
residuals for white. Results show that the null hypothesis of no 
autocorrelation was not rejected at conventional significance 
levels, confirming adequacy of the ARIMA-GAS specification. 
 
Table 12: RMSE Comparison across Competing Models 

Model MSFT Open MSFT Close 

ARIMA 0.00283 0.00265 

GAS 0.00247 0.00236 

GARCH 0.00254 0.00241 

LSTM 0.00232 0.00221 

ARIMA-GAS 0.00206 0.00195 

 
As shown in Table 12, the ARIMA-GAS model consistently 
delivered superior performance across both the MSFT Open and 
Close price series. It achieved the lowest RMSE values, 
outperforming not only classical econometric models (ARIMA, 
GARCH, GAS) but also the deep learning-based LSTM model. This 
reinforces the adaptive advantage of the ARIMA-GAS model in 
capturing both short-term patterns and time-varying volatility in 
intradaily financial series. 
 
The performance edge is particularly significant given the high 
volatility and noise levels typically observed in minute-level stock 
data. The hybrid structure of ARIMA-GAS, which incorporates both 
deterministic lag structures and score-driven stochastic dynamics, 
allows it to adaptively respond to sudden market shifts. Figure 3 
provides a visual representation of the forecast error trajectories 
across models, highlighting the tighter distribution of errors under 
the ARIMA-GAS specification. 

 

 
Figure 3: Forecast Error Comparison across Models 
 
Empirical Illustration of Score-Driven Updating 
To illustrate the time-varying nature of the proposed ARIMA-GAS 
model, the dynamic evolution of the scaled score 𝑠𝑡 over time was 

examined. The score reflects the instantaneous direction and 
magnitude of parameter adjustments, acting as the driving force for 
model adaptivity. 

 

 
Figure 4: Time Evolution of Scaled Score 𝑠𝑡 
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Figure 4 shows that the score responds sensitively to shocks in the 
series, especially during volatility bursts or structural changes. This 
empirical behavior confirms the adaptive learning capacity 
embedded in the GAS component of the hybrid model. 
 
Interpretation of Time-Varying Mean and Variance 

The time-varying conditional mean (𝜇𝑡) and variance (𝜎𝑡
2) 

estimated via the ARIMA-GAS model provides critical insight into 
the underlying dynamics of the asset returns. 
 

 
Figure 5a: Smoothed Paths of 𝜇𝑡  
 
 

 
Figure 5b: Smoothed Paths of 𝜎𝑡

2 
 
Figures 5a and b reveal that 𝜇𝑡  responds gradually to persistent 

shifts in asset behaviour, while 𝜎𝑡
2 exhibits sharp increases during 

volatility clustering and potential jumps. These features underscore 
the model’s flexibility in adjusting to evolving market conditions and 
underscore the non-constant nature of risk and drift in high-
frequency financial data. 
 
Financial and Econometric Implications 
The empirical findings carry several significant financial and 
econometric implications: 

1. Jump Detection and Clustering: The spikes in 𝜎𝑡
2 

coincide with known periods of macroeconomic 
announcements and market openings, supporting 
the model's ability to detect sudden volatility 
jumps. This feature is particularly useful for high-
frequency trading platforms where pre-emptive 
risk control is necessary. 

2. Market Regime Tracking: By capturing shifts in 𝜇𝑡 ,  
3. the ARIMA-GAS model effectively tracks 

transitions between bullish and bearish phases. 
These transitions are not only statistically 
significant but also align with externally verifiable 
market narratives (e.g., quarterly earnings 
releases, policy announcements). 

4. Algorithmic Trading and Forecasting: The model’s 
structure, especially the score-driven updating 
mechanism, lends itself well to real-time 
implementation in automated trading systems. 

The ability to update 𝜇𝑡  and 𝜎𝑡
2 dynamically in 

response to market changes enhances its 
forecasting credibility and risk-adjusted return 
potential. 

5. Broader Econometric Contribution: From an 
econometric standpoint, the ARIMA-GAS hybrid 
approach bridges traditional time series 
techniques with modern score-driven frameworks. 
It offers a unified platform capable of handling 
serial dependence, non-stationary trends, and 
conditional heteroskedasticity—all essential for 
robust modelling of intraday asset behaviour. 

The ARIMA-GAS model consistently outperformed standard 
ARIMA, GAS, GARCH, and LSTM models across all simulated 
scenarios, demonstrating superior forecast accuracy, reliable 
residual diagnostics, and strong robustness to non-Gaussian 
disturbances. In the baseline scenario, the model achieved 
accurate parameter recovery and stable variance tracking, thereby 
validating its foundational structure and estimation reliability. 
Moreover, under conditions involving heavy-tailed and skewed 
error distributions, the model maintained commendable 
performance, highlighting its resilience in non-normal environments 
typically encountered in financial time series. 
 
The ARIMA-GAS model demonstrated dynamic adaptability in 
scenarios involving structural breaks, effectively capturing regime 
shifts, a critical feature in real-world asset markets. Empirical 
application to intradaily Microsoft stock data further reinforced the 
model’s practical relevance. The estimated time-varying 

parameters, particularly 𝜇𝑡  and 𝜎𝑡
2, aligned with known market 

volatility patterns and clustering behavior, providing nuanced 
insights into evolving asset risk and return structures. These real-
time tracking capabilities proved valuable in identifying hidden 
market dynamics and enhancing forecast responsiveness. 
 
Residual diagnostics confirmed the adequacy of the model, with no 
significant evidence of autocorrelation or model misspecification. 
Additionally, the score-driven updating mechanism at the core of 
the ARIMA-GAS architecture offered both econometric 
transparency and interpretability, which are often lacking in black-
box machine learning alternatives. Overall, the ARIMA-GAS model 
presents a compelling hybrid framework that effectively integrates 
classical time series modelling with modern likelihood-based 
updating, making it a robust and interpretable tool for advanced 
forecasting in high-frequency financial contexts. 
 
Table 13: One–step–ahead forecasts for MSFT intradaily returns 
(first 12 holdout observations) 

Tim
e 
(UT
C) 

𝑦𝑡 𝑦̂𝑡∣𝑡−1 𝑒𝑡 80% 
PI 
(low) 

80% 
PI 
(high) 

95% 
PI 
(low / 
high) 

202
3-
09-
28 
19:0
6 

0.000
21 

0.000
18 

0.000
03 

0.000
09 

0.000
27 

0.000
05 / 
0.000
31 

202
3-
09-
28 

-
0.000
12 

-
0.000
08 

-
0.000
04 

-
0.000
18 

0.000
02 

-
0.000
22 / 
0.000
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19:0
7 

06 

202
3-
09-
28 
19:0
8 

0.000
04 

0.000
03 

0.000
01 

-
0.000
05 

0.000
11 

-
0.000
09 / 
0.000
15 

202
3-
09-
28 
19:0
9 

-
0.000
31 

-
0.000
22 

-
0.000
09 

-
0.000
32 

-
0.000
12 

-
0.000
36 / -
0.000
08 

202
3-
09-
28 
19:1
0 

0.000
15 

0.000
11 

0.000
04 

0.000
02 

0.000
20 

-
0.000
02 / 
0.000
24 

202
3-
09-
28 
19:1
1 

-
0.000
06 

-
0.000
05 

-
0.000
01 

-
0.000
13 

0.000
03 

-
0.000
17 / 
0.000
07 

202
3-
09-
28 
19:1
2 

0.000
09 

0.000
07 

0.000
02 

-
0.000
01 

0.000
15 

-
0.000
05 / 
0.000
19 

202
3-
09-
28 

-
0.000
42 

-
0.000
29 

-
0.000
13 

-
0.000
40 

-
0.000
18 

-
0.000
44 / -
0.000

19:1
3 

14 

202
3-
09-
28 
19:1
4 

0.000
28 

0.000
21 

0.000
07 

0.000
11 

0.000
31 

0.000
07 / 
0.000
35 

202
3-
09-
28 
19:1
5 

-
0.000
10 

-
0.000
09 

-
0.000
01 

-
0.000
17 

-
0.000
01 

-
0.000
21 / 
0.000
03 

202
3-
09-
28 
19:1
6 

0.000
05 

0.000
04 

0.000
01 

-
0.000
04 

0.000
12 

-
0.000
08 / 
0.000
16 

202
3-
09-
28 
19:1
7 

-
0.000
19 

-
0.000
14 

-
0.000
05 

-
0.000
23 

-
0.000
05 

-
0.000
27 / -
0.000
01 

 
To complement the aggregate accuracy metrics in Table~10, the 
study reports explicit one–step–ahead forecasts from the ARIMA--
GAS model on the MSFT holdout window (final 5% of the sample). 
Residuals 𝑒𝑡 are small and centred near zero, confirming good 
calibration. Prediction intervals widen around larger shocks (e.g., 
19{:}13), consistent with the adaptive GAS updating of scale. 
 

 

 
Figure 6: Observed returns and forecasted returns for MSFT intradaily returns 
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Table 14: Observed vs. forecasted returns across models (first 6 
holdout observations) 

Tim
e 
(UT
C) 

𝑦𝑡 ARI
MA--
GAS 

GAS
—
Nor
mal 

GARCH
(1,1) 

ARIMA(
1,0,1) 

LST
M 

202
3-
09-
28 
19:
06 

0.00
021 

0.00
018 

0.00
016 

0.00014 0.00012 0.00
017 

202
3-
09-
28 
19:
07 

-
0.00
012 

-
0.00
008 

-
0.00
009 

-
0.00007 

-0.00005 -
0.00
010 

202
3-
09-
28 
19:
08 

0.00
004 

0.00
003 

0.00
002 

0.00001 0.00000 0.00
003 

202
3-

-
0.00

-
0.00

-
0.00

-
0.00018 

-0.00015 -
0.00

09-
28 
19:
09 

031 022 020 025 

202
3-
09-
28 
19:
10 

0.00
015 

0.00
011 

0.00
009 

0.00007 0.00005 0.00
010 

202
3-
09-
28 
19:
11 

-
0.00
006 

-
0.00
005 

-
0.00
004 

-
0.00003 

-0.00002 -
0.00
004 

 
To enhance transparency, explicit forecasts from all competing 
models (ARIMA--GAS, GAS--Normal, GARCH (1, 1), ARIMA (1, 0, 
1), and LSTM) for a representative subset of the holdout window 
(See Table 14) are reported.  Each row shows the actual return 𝑦𝑡 

alongside the corresponding one–step–ahead forecast 𝑦̂𝑡∣𝑡−1 from 

each model. 
 
 

 

 
Figure 7: Observed versus Forecasted returns across models (first 6 holdout observations) 
 
Conclusion 
This article has modelled intradaily financial data using a hybrid 
ARIMA-GAS model. The supremacy exhibited by the proposed 
ARIMA-GAS model should not be unexpected since the hybrid 
model utilizes the strengths of the component models involved in 
its construction. The power of the proposed model is that it can 
easily account for jumps through its flexible and dynamic structure 
since the GAS component allows the model to capture time-varying 
parameters, which can help account for sudden changes or jumps 
in the data. As for the time-varying parameters, by allowing 
parameters to vary over time, the proposed model can capture 
changes in the underlying dynamics of the time series, including 
jumps or structural breaks. The score-driven updates in the GAS 

component help the model to quickly respond to new information 
and adjust its parameters in response, accordingly. This enables 
the model to capture jumps in the time series. As for the ARIMA 
component of the proposed model, it plays the crucial role in 
modelling the mean dynamics and providing a foundation for the 
GAS component to capture time-varying parameters and potential 
jumps. The proposed ARIMA-GAS clearly demonstrates its 
capacity for capturing volatility dynamics and improved forecasting 
accuracy in modelling intradaily data.  
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