
Science World Journal Vol. 20(No 4) 2025   https://dx.doi.org/10.4314/swj.v20i4.8 
www.scienceworldjournal.org 
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)   
Published by Faculty of Science, Kaduna State University 

 

 Autoencoder-Based Model for Detecting IOT Network Traffic Anomalies 1377 

AUTOENCODER-BASED MODEL FOR DETECTING IOT NETWORK 
TRAFFIC ANOMALIES 
 
*1Bako Halilu Egga, 1Abdullahi Salihu Audu, 1Gilbert O.I Aimufua, 1Morufu Olalere, 1Binyamin Adeniyi Ajayi, 2Igila Terngu Solomon 

 

1Department of Computer Science, Nasarawa State University, Keffi, Nasarawa State, Nigeria 
2Infoquest Academy, Suite A-305 AGY Plaza, Bakan Gizo, Keffi, Nasarawa State, Nigeria 
 
*Corresponding Author Email Address: bakohaliluegga@nsuk.edu.ng      
 
ABSTRACT 
Cyberattacks on computer networks are becoming increasingly 
sophisticated, particularly in Internet of Things (IoT) environments, 
where devices continuously generate large and complex amounts 
of data. Traditional security systems that rely on predefined rules 
or signatures often fail to detect new or evolving threats. Even deep 
learning methods, such as RNNs and CNNs, face challenges in 
handling dynamic traffic efficiently. To address these issues, this 
study introduces an autoencoder-based anomaly detection model 
that learns to identify abnormal network activities. The model was 
trained using Kaggle datasets containing both normal IoT traffic 
and malicious traffic from well-known botnets like Mirai and 
BASHLITE. By compressing network data into a latent space and 
reconstructing it, the model uses reconstruction error to detect 
unusual patterns that indicate anomalies. The experimental results 
were highly promising, achieving 99% accuracy, precision, recall, 
and F1-scores above 99%. Unlike previous studies that depend on 
simulated or cloud-based data, this research highlights the power 
of autoencoders for real-world IoT anomaly detection and lays a 
strong foundation for developing real-time intrusion detection 
systems. 

 
Keywords: Autoencoder, Anomaly Detection, Internet of Things 
(IoT), Intrusion Detection System (IDS), Machine Learning. 
 
INTRODUCTION  
The widespread availability of Internet of Things (IoT) devices has 
revolutionized contemporary life, making it easier to connect 
everything in smart homes, healthcare, transportation, and 
industrial networks (Qiu et al., 2025). Yet this rapid penetration has 
created serious cybersecurity issues. One of the emergent threats 
is the susceptibility of IoT devices to botnet attacks, which take 
advantage of resource-limited architectures and poor security 
settings. Malware types such as Mirai and BASHLITE were 
responsible for mass-scale distributed denial-of-service (DDoS) 
attacks that threatened to compromise the stability and reliability of 
critical infrastructures (Qiu et al., 2025). 
Despite the scope of the problem, the academic community is 
marred by an after-all shortage- the lack of realistic and publicly 
available botnet datasets that can potentially aid in intrusion and 
anomaly detection model development and evaluation. Those 
datasets that are available tend to be antiquated, artificial, or fail to 
adequately represent real-world IoT traffic, thus weakening and 
limiting the scope of put-forward security interventions (Ayad et al., 
2024). This limitation has weakened the creation of scalable and 
reliable anomaly detection processes capable of mitigating 
emerging IoT attacks. 
Recent works have sought to overcome this challenge by using 
deep learning and hybrid detection methods. Somma (2025) is a 

case in point, with the study exploring temporal differential 
consistency autoencoders for enhanced anomaly detection in 
cyber-physical systems. The same goes for Shah et al. (2024), who 
proposed a hybrid deep learning model for IoT botnet detection. All 
these efforts indicate the urgency of the issue, coupled with the 
new solutions being explored. However, there are concerns with 
dataset variability, real-time tunability, and adaptability to evolving 
attack patterns (Shah et al., 2024). 
This study is motivated by the immediate necessity of bridging the 
dataset gap in IoT botnet research. With real traffic records of 
compromised commercial IoT devices infected with Mirai and 
BASHLITE, it would provide a more realistic platform for the 
evaluation of anomaly detection models. In toto, the paper fulfills 
its contribution towards the advancement of IoT security through 
bridging the gap between theoretical model development and 
practical applicability. 
Present studies have shown major advancements in anomaly 
detection systems for IoT and networks with attempts for higher 
precision, computational complexity, and feature abstraction. 
Alaghbari et al. (2023) suggested a deep autoencoder-based 
combined model that focused on detecting anomalies and feature 
abstraction together. Their approach demonstrated strong 
detection performance with reduced computational complexity 
compared to OC-SVM (One-Class Support Vector Machine) and 
Isolation Forest algorithms. However, their model was primarily 
static network information-based and failed to fully explore real-
time flexibility or temporal modeling of behavior.  
Rhachi, Balboul, and Bouayad (2023) emphasized the growing 
security concerns in Internet of Things (IoT) networks, more 
particularly, how challenging it is to determine anomalies due to the 
unpredictability and dynamic nature of these environments. Their 
paper suggested a deep autoencoder (DAE) with ANOVA F-test 
feature selection to enhance the precision in the detection of 
anomalies. While their approach improved detection performance 
85% and 92% for binary and multi-class, respectively, the study 
was based mostly on the NSL-KDD dataset, which is not 
representative of modern real-world IoT traffic. Moreover, 
deployment challenges on embedded or limited-resource devices 
are yet to be thoroughly investigated. 
Torabi et al. (2023) explored a smarter way to detect unusual 
network activity by using an autoencoder model that measures how 
much the system’s reconstruction of data differs from the original. 
Instead of treating reconstruction error as a single value, they 
looked at it feature by feature, which made the model better at 
spotting subtle irregularities in cloud network traffic. Their 
experiments on the CIDDS-001 dataset showed clear 
improvements in accuracy, recall, and F1-score compared to older 
methods. 
What makes their work stand out is the way they refined how 

F
u

ll 
L

en
g

th
 R

es
ea

rc
h

 A
rt

ic
le

 

https://dx.doi.org/10.4314/swj.v20i4.8
http://www.scienceworldjournal.org/
mailto:bakohaliluegga@nsuk.edu.ng


Science World Journal Vol. 20(No 4) 2025   https://dx.doi.org/10.4314/swj.v20i4.8 
www.scienceworldjournal.org 
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)   
Published by Faculty of Science, Kaduna State University 

 

 Autoencoder-Based Model for Detecting IOT Network Traffic Anomalies 1378 

reconstruction errors are calculated and used to detect anomalies. 
However, their model was only tested in controlled cloud 
environments. This leaves an open question about how well such 
a system would perform in real-world or IoT settings, where 
network data is often more complex and unpredictable. This gap 
suggests a need for future research to adapt and test similar 
approaches in dynamic, real-time scenarios. 
Ali et al. (2024) introduced an innovative hybrid deep learning 
model that combines Long Short-Term Memory (LSTM) 
Autoencoders and Multilayer Perceptrons (MLP) to improve botnet 
detection in IoT settings. The model showed impressive accuracy 
of 99.77% and 99.67% on the N-BaIoT2018 and UNSW-NB15 
datasets, respectively, performing better than conventional 
detection schemes. This achievement highlights the increasing 
importance of merging sequential pattern learning (via LSTM) with 
non-linear feature extraction (via MLP) for identifying intricate 
attack patterns. 
Although the research attained great detection accuracy, it also 
identified several limitations that limit scalability and real-world 
applicability. These are server dependence, hybrid model 
interpretability, and vulnerability to new attacks. Additionally, 
system centralization also poses potential dangers to data privacy 
and robustness since server compromise would expose sensitive 
model parameters. Decentralized and light-weight designs were 
proposed by the authors as future alternatives for the purposes of 
increasing resource-limited IoT devices' adaptability. 
Following these findings, Qiu et al. (2025) introduced FedAware 
(Federated Learning-based Intrusion Detection Model for IoT), an 
IoT intrusion detection system founded on federated learning that 
integrates a Fractal Shrinking Autoencoder (FSAE) and one-class 
SVDD classification. The ImbalMSE (Imbalanced Mean Squared 
Error) algorithm by them improved model aggregation in non-iid 
(Non-Independent and Non-Identically Distributed) devices to 
manage heterogeneity and limited resources in distributed 
environments. Despite high performance, FedAware did not utilize 
advanced privacy-preserving methods or adversarial attack 
robustness testing. 
As a supplement to this computational method, Shah et al. (2024) 
employed fractal–fractional calculus in the modeling of nonlinear 
re-infection dynamics for infections such as COVID-19. The study 
extended traditional differential equation models by the introduction 
of fractal and fractional operators for expressing anomalous 
diffusion processes as well as complex biological interactions. 
Employing techniques such as the Volterra–Lyapunov method and 
fixed-point theory, the study derived stability, sensitivity, and 
numerical confirmation through comparative analysis based on real 
data. While robust, the research highlighted the need to extend the 
model to include additional compartments (e.g., quarantined, 
exposed, vaccinated) and capture higher-order dynamical 
interactions for more realistic simulations. 
Based on those foundations, Somma (2025) introduced a Hybrid 
Temporal Differential Consistency Autoencoder (hTDC-AE) to 
identify anomalies in cyber-physical systems. Through the 
integration of deterministic and statistical nodes into an 
autoencoder structure, the model utilized physics-driven 
consistency principles in machine learning. This allowed the 
system to detect both gradual and sudden anomalies yet remain 
computationally efficient enough for edge devices. The hTDC-AE 
reported faster detection speed (3% improvement compared to 
prior benchmarks) and interpretability, but also requested deeper 
exploration of the theoretical consistency of static and dynamic 

latent features. 
To these advances, Al-Qudah (2025) offered a multi-step 
comparative approach that rigorously assessed preprocessing and 
modeling settings like RNN-LSTM, autoencoders, and Gradient 
Boosting for anomaly detection in IoT. His findings revealed that 
Gradient Boosting yielded stable accuracy regardless of 
configurations, but autoencoders fared best on recall, a critical 
factor against false negatives. The work contributed a structured 
experimental foundation for comprehending the interaction 
between model selection and preprocessing, albeit largely 
comparative rather than generative, with open issues regarding 
adaptive model integration and automation. 
Similarly, Ayad et al. (2025) introduced an efficient real-time IoT 
anomaly detection model via integration of a one-class asymmetric 
stacked autoencoder and deep neural network (DNN). Their hybrid 
method retained superior performance, 99.99% accuracy and 0.27 
s detection time on the BoT-IoT dataset and performed exceedingly 
well in real-time scenarios. Nevertheless, despite the study 
mentioning computational efficiency as well as class imbalance, it 
only accounted for IoT settings and not temporal feature 
relationships or cross-domain adaptability in video-based or sensor 
surveillance applications. 
 
Synthesis and Gap 
The literature review suggests three significant gaps: 
 
Dataset Limitations: Synthetic or outdated datasets reduce the 
usability and reliability of detection models. 
Model Transparency and Generalizability: The majority of 
models perform exceptionally well without addressing any potential 
dataset bias or providing an interpretable thresholding technique. 
 
Practical Deployment: Few techniques consider the 
computational feasibility of deploying autoencoder-based anomaly 
detection in practical IoT scenarios. 
This work fills these gaps with a publicly available IoT botnet data 
set that was collected from infected commercial devices with Mirai 
and BASHLITE, which is realistic for evaluation. It also identifies 
accurate anomaly thresholding methods and critically evaluates 
model performance regarding possible dataset biases, thereby 
creating robust, realistic, and transparent IoT network anomaly 
detection systems. 

 
MATERIALS AND METHODS 
This research focuses on a deep learning technique known as an 
Autoencoder, implemented using the Python programming 
language. The study employed secondary data collected from 
Internet of Things (IoT) devices, sourced from Kaggle 
(https://www.kaggle.com/datasets/mkashifn/nbaiot-dataset). The 
dataset contains traffic data from nine commercial IoT devices that 
were deliberately infected with Mirai and BASHLITE botnets. These 
devices were used to capture real network traffic patterns, including 
both benign and malicious activities. The dataset comprises 
multivariate sequential data with a total of 7,062,606 instances and 
115 attributes. 
 
Dataset Analysis 
The data used in this study is network traffic data, which contains 
various forms of attacks and also benign traffic. The “type” column 
labels each record as its respective class. 
Data analysis shows a strong skewing of the distribution of traffic 

https://dx.doi.org/10.4314/swj.v20i4.8
http://www.scienceworldjournal.org/
https://www.kaggle.com/datasets/mkashifn/nbaiot-dataset/data
https://www.kaggle.com/datasets/mkashifn/nbaiot-dataset


Science World Journal Vol. 20(No 4) 2025   https://dx.doi.org/10.4314/swj.v20i4.8 
www.scienceworldjournal.org 
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)   
Published by Faculty of Science, Kaduna State University 

 

 Autoencoder-Based Model for Detecting IOT Network Traffic Anomalies 1379 

classes as seen in the bar plot and pie chart. The 'mirai_syn' type 
of attack was the most dominant, with 30,643 instances (16.1%), 
closely followed by 'mirai_ack' (25,549; 13.4%), 'mirai_udp' 
(23,766; 12.4%), and 'mirai_udpplain' (22,135; 11.6%). All these 
four classes, together, make up a large majority of the dataset. 
On the other hand, benign traffic is the least frequent category with 
a paltry 12,387 instances (6.5%), showing an obvious imbalance. 
The 'gafgyt' attack types, i.e., gafgyt_udp, gafgyt_combo, 
gafgyt_scan, and gafgyt_junk, are moderately frequent, occupying 
the middle ground between common Mirai types and benign traffic. 
This bias is a key characteristic of the dataset. The prevalence of 
some Mirai attack varieties implies that they are common attacks 
in test or real-world environments, and the absence of benign traffic 
promotes distrust of the dataset design, potentially skewing 
towards evil deeds. 
From the modeling perspective, this imbalance is undesirable while 
training network security models. Models might become biased 
toward the more frequent attack types and thus reduce their 
effectiveness when identifying less frequent attacks or correctly 
distinguishing benign traffic. To avoid this flaw, future research 
should endeavor to apply data balancing strategies, e.g., 
resampling, class weighting, or synthetic data generation, to 
improve model generalization and offer effective detection across 
all types of traffic. 

 

 
 
Figure 1: Distribution of Attack Types (Bar Plot) 

 

 
 

Figure 2: Distribution of Attack Types (Pie Chart). 
 

Autoencoder 
An autoencoder (AE) is a nonlinear unsupervised learning model 
that is trained to minimize the error between the input and output 

sets, typically using a subset of the data, such as the normal set 
only (Alaghbari et al., 2023). AE consists of an encoder that 
transforms the input data into a compressed form, known as 
bottleneck features or latent space, and a decoder that transforms 
the compressed data back into the original data. AE is used to 
detect anomalies based on reconstruction error (RE) calculated 
from the difference between the original and reconstructed 
samples. To distinguish between normal and anomalous data, it 
usually produces higher RE for anomalous samples than for normal 
samples (Alaghbari et al., 2023). In addition to that, it can be used 
as a feature extraction technique, where the compressed data is 
used for other purposes such as classification (Yeom et al., 2020). 
Auto-encoder comprises two portions, the encoder and decoder. In 
other research, there are three components, and the third 
component is a middleware between both, known as code. 
Encoders: The input data is compressed and represented in a 
smaller dimension by the encoder layer, which makes the 
compressed data appear to be the original data, but it is not. 
Code: An encoder, also known as a bottleneck layer and denoted 
by the letter z in architecture, maps input space into lower lower-
dimensional latent space. It now represents unsupervised data in 
a lower-dimensional manner. The component known as code is 
what the decoder receives as compressed input. 
Decoder: The decoder extracts the original data of the same 
dimension from the encoded data. When the data is moved from 
the lower latent space by the decoder, the dimensionality of the 
output x bar matches output x in the reconstruction stage. If we 
consider it in terms of data compression, there is lossless 
compression, but auto-encoders use lossy compression involves 
reducing and then uncompressing the input. It requires an effort to 
be close to the input when it is uncompressed, but the outcome is 
different. (Agrawal, 2022). 
The autoencoder-based model in Figure 1 was designed for 
detecting network traffic anomalies. It comprised the following 
layers: (i) Input, (ii) Encoder, (iii) Bottleneck, (iv) Decoder. 

 

 
 

Figure 3: Auto-encoders Architecture Adopted from (Alaghbari et 
al., 2023). 

 
Autoencoder Proposed Architecture 
The autoencoder used for anomaly detection consists of six main 
components: Input Layer, Encoder, Bottleneck, Decoder, 
Reconstructed Output, and Anomaly Detection Module. The input 
layer receives network traffic data x and feeds it into a series of fully 
connected layers of the encoder that sequentially compact the 
representation of data into the low-dimensional latent space, also 
known as the bottleneck. This layer preserves the majority of the 
significant features of normal traffic patterns and excludes noise 
and redundancy. 
The decoder is also a reversed architecture of the encoder, 

transforming the input data 𝑥̂ back from the latent space. The 

model is trained to minimize the reconstruction loss, typically in 

https://dx.doi.org/10.4314/swj.v20i4.8
http://www.scienceworldjournal.org/


Science World Journal Vol. 20(No 4) 2025   https://dx.doi.org/10.4314/swj.v20i4.8 
www.scienceworldjournal.org 
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)   
Published by Faculty of Science, Kaduna State University 

 

 Autoencoder-Based Model for Detecting IOT Network Traffic Anomalies 1380 

terms of Mean Squared Error (MSE) between reconstructed output 
and input: 

 

𝐿 =
1

𝑛
 ∑ (𝑥𝑖 −  𝑥𝑖̂)

2𝑛
𝑖=1   (1) 

 
Training Process 
The process of learning includes training the autoencoder with 
normal traffic data alone such that the model acquires knowledge 
of normal network behavior. Since the autoencoder learns only 
normal patterns, it is kept aware of nonconforming deviations from 
learned knowledge. The parameters of the model are optimized 
using the Adam optimizer with learning rate tuned for convergence 
stability. Training continues until reconstruction loss is stabilized, 
indicating that the model has learned the normal distribution of 
data. 
 
Threshold for Anomaly Determination 
After training, the model calculates the reconstruction error per 
data point. Data points that produce higher-than-normal 
reconstruction errors are flagged as potential anomalies. The 
threshold for anomaly detection is statistically determined from the 
distribution of the reconstruction errors over the training set. That 
is, a cutoff value is chosen by one of the following methods: 
1) Mean and Standard Deviation Rule: 

𝑇 =  𝜇 + 𝑘𝜎   (2) 

where 𝜇   and 𝜎  are the mean and standard deviation of 

reconstruction errors from normal data, and (k) is an 
empirically chosen factor (commonly between 2 and 3). 

2) Percentile-Based Thresholding: Selecting a cutoff based 
on the 95th or 99th percentile of the error distribution. 

The data point is classified as anomalous if the reconstruction error  

𝐸 = |𝑥 − 𝑥̂| 

surpasses the threshold T. This method guarantees an objective, 
data-driven method of differentiating between typical and 
anomalous patterns. 
The trained autoencoder is used in deployment to process newly 
received IoT traffic data. The reconstruction error is calculated in 
real time by the system. The behavior is categorized as normal if 
the error stays below the threshold and as anomalous otherwise. 
Without the need for manual labeling, this procedure allows for 
real-time, unsupervised anomaly detection that adjusts to various 
IoT environments. 
 

 
Figure 4: Proposed Architecture 
 
Mathematical Formulation of Model 
Let's denote the following variables: 

• X: Input data, representing network traffic data 
samples. 

• Xi: A specific data sample in the dataset X 

• H: Hidden layer representation in the 
autoencoder. 

• Hi: Hidden layer representation for data sample 
Xi. 

• D: Output reconstruction of the autoencoder. 

• Di: Output reconstruction for data sample Xi. 

• E: Reconstruction error. 

• Ei: Reconstruction error for data sample Xi. 

• N: Number of input features (dimensions) in each 
data sample. 

• M: Number of neurons in the hidden layer of the 
autoencoder. 

 
Data Preprocessing: 
Normalize the input data (X) to have a zero mean and unit variance. 
 
Autoencoder Architecture: 
The autoencoder includes a hidden layer with M neurons, an output 
layer with N neurons, and an input layer with N neurons. 
(Reconstruction layer). 
 
Encoding: 
The encoding operation from input (Xi) to hidden representation 
(Hi) is given by:   

Hi = fencode (Wencode*Xi + bencode)   
 (3) 

where Wencode is the weight matrix and bencode is the bias vector for 
the encoding operation, and fencode is the activation function  
 
Decoding: 
The decoding operation from hidden representation Hi to 
reconstruction Di is given by: 

Di = fdecode (Wdecode * Hi + bdecode)   
 (4) 

where Wdecode is the weight matrix and bdecode is the bias vector for 
the decoding operation, and decode fdecode is the activation 
function.     
 
Reconstruction Error: 
Calculate the reconstruction error Ei for data sample (Xi) as the 
difference between (Xi) and its corresponding reconstruction (Di): 

 Ei = Xi - Di     
  (5) 

Anomaly Detection: 

Define a threshold (𝝉) for anomaly detection. Data samples with 

reconstruction errors (Ei) exceeding this threshold are considered 
anomalies. 
 
Training: 
The autoencoder is trained to minimize the mean squared error 
(MSE) between the input data (Xi) and its reconstruction (Di) 

𝑴𝑺𝑬 =
𝟏

𝑵
 ∑ (𝑋𝑖, 𝑗 − 𝐷𝑖, 𝑗)2𝑁

𝑗=1    (6) 

The optimization process adjusts the weights and biases (Wencode, 

Wdecode, bencode, bdecode) to minimize the reconstruction error. 
 

 

https://dx.doi.org/10.4314/swj.v20i4.8
http://www.scienceworldjournal.org/


Science World Journal Vol. 20(No 4) 2025   https://dx.doi.org/10.4314/swj.v20i4.8 
www.scienceworldjournal.org 
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)   
Published by Faculty of Science, Kaduna State University 

 

 Autoencoder-Based Model for Detecting IOT Network Traffic Anomalies 1381 

RESULTS AND DISCUSSION  
Here, the study results are discussed and presented. Results are 
depicted in the following tables and figures. For accurate and 
reliable predictions in deep learning, particularly with deep 

autoencoders, we must evaluate the model using important 
measures of performance. These include Accuracy, Precision, 
Recall, F1-Score, and ROC Curves. 

 
 
Table 1: Confusion Matrix's Predicted and Actual Class Parameter 

Actual Class Predicted 
Class 

TP FP FN TN 

benign benign 2422 2 3 35750 

gafgyt_combo gafgyt_combo 2810 151 63 35066 

gafgyt_junk gafgyt_junk 2762 151 60 35066 

gafgyt_scan gafgyt_scan 3074 9 2 35054 

gafgyt_udp gafgyt_udp 3164 3 2 35043 

mirai_ack mirai_ack 5058 14 7 33133 

mirai_scan mirai_scan 3240 1 0 34971 

mirai_syn mirai_syn 6185 0 0 31996 

mirai_udp mirai_udp 4746 17 15 33392 

mirai_udpplain mirai_udpplain 4466 0 0 33650 

True Positives (TP): These are the correctly predicted positives 
as normal traffic, which means that the value of the actual class is 
normal, and the value of the predicted class is also normal traffic. 
True Negatives (TN): These are the correctly predicted as an 
attack, which means that the value of the actual class attack is 
equal to the value of the predicted class attack.  
False Positives: In our result, this shows the actual class is 
abnormal traffic/malware, but the classifier predicted it as normal 
traffic  
False Negatives: The actual class is normal traffic, but the 
classifier predicts it as an attack. 

 

 
Figure 5: Confusion Matrix  

 
Figure 4 shows how well the Autoencoder-based malware 
detection system performs using a confusion matrix. The matrix 
compares what the model predicted with the actual malware types. 
Each row represents the true class, and each column represents 
the predicted class. The darker the color in a cell, the more often 
that combination occurred. The diagonal cells show correct 
predictions, while the off-diagonal ones show where the model got 
it wrong. By looking at this, we can see which malware types the 
model identifies accurately and which ones it tends to confuse. 
Overall accuracy is determined by dividing the number of correct 
predictions by the total cases. 

 

Table 2: Performance measures and the percentages of the model 

 
 
 

 
Figure 5A: Loss Comparison of AutoEncoder-Based Models. 
 

https://dx.doi.org/10.4314/swj.v20i4.8
http://www.scienceworldjournal.org/


Science World Journal Vol. 20(No 4) 2025   https://dx.doi.org/10.4314/swj.v20i4.8 
www.scienceworldjournal.org 
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)   
Published by Faculty of Science, Kaduna State University 

 

 Autoencoder-Based Model for Detecting IOT Network Traffic Anomalies 1382 

 
Figure 6: Accuracy Comparison of AutoEncoder-Based Models. 
 
In Figures 5 and 6, the first plot shows both the training and testing 
sets' accuracy values. The accuracy values are displayed on the y-
axis, and the epoch number is displayed on the x-axis. The 
accuracy is shown by the blue line. Values for the training set, while 
the orange line represents the accuracy values for the testing set. 
The legend indicates which line represents which set. The second 
plot shows the loss values for both the training and testing sets. 
The y-axis represents the loss values, while the x-axis represents 
the epoch number. The blue line represents the loss values for the 
training set, while the orange line represents the loss values for the 
testing set. The legend indicates which line represents which set. it 
is also noted that the model's accuracy is increasing with each 
epoch, and the loss is decreasing, which indicates that the model 
is learning from the data and is not overfitting. It is also important 
to note that the accuracy values for the testing set are not too far 
behind the accuracy values for the training set, which indicates that 
the model is generalizing well and can make accurate predictions 
on new, unseen data.  
 

 
Figure 7: Diagonal of the Confusion matrix 
In Figure 7 showing the number of data points properly separated 
by an autoencoder-based model is represented by a diagonal of 
the confusion matrix. A higher value of the diagonal indicates that 
the model can correctly classify more data points. 

 

 
 
Figure 8: ROC Curves for Each Class 

 
In Figure 8, the graph visualizes ROC (Receiver Operating 
Characteristic) curves for each class in an instance containing 
several classes. The effectiveness of a binary classification model 
is evaluated using ROC curves at various classification thresholds. 
Our model generates the AUC (area under the ROC curve) score 
(AUCAE = 1.00) with a very high true positive rate and a low false-
positive rate, exhibiting its great performance. 

 
Autoencoder-Based Classification Model Prediction 
This Autoencoder-Based Classification Model Prediction Report for 
Excel File Data summarizes the predictions made by a trained 
classification model based on an autoencoder on imported data 
from the Excel file 
‘/content/drive/MyDrive/network/gafgyt.scan_datase.xlsx’. 
The model, designed to identify types of network traffic, analyzed 
the input data and produced the following predicted class labels in 
Figure 9: 
 

 
Figure 9: Predicted Class Label 
 
From these correlations, it can be seen that most of the traffic within 
the dataset has been labeled as 'mirai_udpplain', which is generally 
linked with the Mirai botnet that utilizes UDP flooding to flood 
network services. A single data point was labeled as 'mirai_syn', 
which indicates the existence of SYN flood behavior, one type of 
attack that targets draining server resources. 
Presence of 'mirai_udpplain' indicates likely UDP flood attack 
signatures in the respective traffic. Existence of 'mirai_syn' would 
indicate a mix of TCP SYN flood signatures, which could be used 
as one of the multi-vector attack approach vectors. This signature 
pattern may suggest that the network traffic in question is made up 
of malicious botnet operations and could require further analysis or 
protection measures. 
 
Conclusion 
This study developed an autoencoder-based model for detecting 
network traffic anomalies and achieved an impressive accuracy of 
99%. The results show that the model can effectively identify 

https://dx.doi.org/10.4314/swj.v20i4.8
http://www.scienceworldjournal.org/


Science World Journal Vol. 20(No 4) 2025   https://dx.doi.org/10.4314/swj.v20i4.8 
www.scienceworldjournal.org 
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)   
Published by Faculty of Science, Kaduna State University 

 

 Autoencoder-Based Model for Detecting IOT Network Traffic Anomalies 1383 

unusual network behavior, making it a promising tool for detecting 
potential cyberattacks. 
However, there are a few limitations to note. The model was tested 
on a specific dataset, which means its performance in real-world 
networks may vary. Also, training deep autoencoders requires high 
computational power, which might make it difficult to use on small 
or low-resource devices. 
In the future, it would be valuable to test this model on real-world 
IoT systems and across multiple datasets to confirm its reliability. 
Improving the model to handle live, streaming data for real-time 
anomaly detection and making it more lightweight for use on edge 
devices are also important directions for further research. 

  
REFERENCE 
Agrawal, R. (2022, January 10). Complete guide to anomaly 

detection with autoencoders using TensorFlow. 
Analytics Vidhya. 
https://www.analyticsvidhya.com/blog/2022/01/complet
e-guide-to-anomaly-detection-with-autoencoders-
using-tensorflow/. 

Alaghbari, K. A., Lim, H. S., Saad, M. H. M., & Yong, Y. S. (2023). 
Deep autoencoder-based integrated model for anomaly 
detection and efficient feature extraction in iot 
networks. IoT, 4(3), 345-365. 

Alaghbari, K. A., Saad, M. H. M., Hussain, A., & Alam, M. R. (2022). 
Activities recognition, anomaly detection and next 
activity prediction based on neural networks in smart 
homes. IEEE Access, 10, 28219-28232. 

Ali, S., Ghazal, R., Qadeer, N., Saidani, O., Alhayan, F., Masood, 
A., ... & Gupta, D. (2024). A novel approach of botnet 
detection using hybrid deep learning for enhancing 
security in IoT networks. Alexandria Engineering 
Journal, 103, 88-97. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Al-Qudah, M., & AlMahamid, F. (2025, April). A Multi-Step 
Comparative Framework for Anomaly Detection in IoT 
Data Streams. In 2025 International Conference on 
New Trends in Computing Sciences (ICTCS) (pp. 432-
439). IEEE. 

Ayad, A. G., El-Gayar, M. M., Hikal, N. A., & Sakr, N. A. (2024). 
Efficient Real-Time anomaly detection in IoT networks 
using One-Class autoencoder and deep neural 
network. Electronics, 14(1), 104. 

Qiu, K., Yan, M., Luo, T., & Chen, F. (2025). FedAware: a 
distributed IoT intrusion detection method based on 
fractal shrinking autoencoder. Journal of King Saud 
University Computer and Information Sciences, 37(7), 
1-21. 

Rhachi, H., Balboul, Y., & Bouayad, A. (2025). Enhanced Anomaly 
Detection in IoT Networks Using Deep Autoencoders 
with Feature Selection Techniques. Sensors, 25(10), 
3150. 

Shah, K., Sarwar, M., & Abdeljawad, T. (2024). A comprehensive 
mathematical analysis of fractal–fractional order 
nonlinear re-infection model. Alexandria Engineering 
Journal, 103, 353-365. 

Somma, M. (2025). Hybrid Temporal Differential Consistency 
Autoencoder for Efficient and Sustainable Anomaly 
Detection in Cyber-Physical Systems. arXiv preprint 
arXiv:2504.06320. 

Torabi, H., Mirtaheri, S. L., & Greco, S. (2023). Practical 
autoencoder based anomaly detection by using vector 
reconstruction error. Cybersecurity, 6(1), 1. 

Yeom, S., Choi, C., & Kim, K. (2020, September). AutoEncoder 
based feature extraction for multi-malicious traffic 
classification. In The 9th International Conference on 
Smart Media and Applications (pp. 285-287). 

https://dx.doi.org/10.4314/swj.v20i4.8
http://www.scienceworldjournal.org/
https://www.analyticsvidhya.com/blog/2022/01/complete-guide-to-anomaly-detection-with-autoencoders-using-tensorflow/
https://www.analyticsvidhya.com/blog/2022/01/complete-guide-to-anomaly-detection-with-autoencoders-using-tensorflow/
https://www.analyticsvidhya.com/blog/2022/01/complete-guide-to-anomaly-detection-with-autoencoders-using-tensorflow/

