Science World Journal Vol. 20(No 4) 2025
www.scienceworldjournal.org

ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)
Published by Faculty of Science, Kaduna State University

AUTOENCODER-BASED MODEL FOR DETECTING IOT NETWORK

https://dx.doi.org/10.4314/swj.v20i4.8

TRAFFIC ANOMALIES

"Bako Halilu Egga, 'Abdullahi Salihu Audu, 'Gilbert O.1 Aimufua, "Morufu Olalere, 'Binyamin Adeniyi Ajayi, 2lgila Terngu Solomon

Department of Computer Science, Nasarawa State University, Keffi, Nasarawa State, Nigeria
2Infoquest Academy, Suite A-305 AGY Plaza, Bakan Gizo, Keffi, Nasarawa State, Nigeria

*Corresponding Author Email Address: bakohaliluegga@nsuk.edu.ng

ABSTRACT

Cyberattacks on computer networks are becoming increasingly
sophisticated, particularly in Internet of Things (loT) environments,
where devices continuously generate large and complex amounts
of data. Traditional security systems that rely on predefined rules
or signatures often fail to detect new or evolving threats. Even deep
learning methods, such as RNNs and CNNs, face challenges in
handling dynamic traffic efficiently. To address these issues, this
study introduces an autoencoder-based anomaly detection model
that learns to identify abnormal network activities. The model was
trained using Kaggle datasets containing both normal loT traffic
and malicious ftraffic from well-known botnets like Mirai and
BASHLITE. By compressing network data into a latent space and
reconstructing it, the model uses reconstruction error to detect
unusual patterns that indicate anomalies. The experimental results
were highly promising, achieving 99% accuracy, precision, recall,
and F1-scores above 99%. Unlike previous studies that depend on
simulated or cloud-based data, this research highlights the power
of autoencoders for real-world loT anomaly detection and lays a
strong foundation for developing real-time intrusion detection
systems.

Keywords: Autoencoder, Anomaly Detection, Internet of Things
(IoT), Intrusion Detection System (IDS), Machine Learning.

INTRODUCTION

The widespread availability of Internet of Things (loT) devices has
revolutionized contemporary life, making it easier to connect
everything in smart homes, healthcare, transportation, and
industrial networks (Qiu et al., 2025). Yet this rapid penetration has
created serious cybersecurity issues. One of the emergent threats
is the susceptibility of loT devices to botnet attacks, which take
advantage of resource-limited architectures and poor security
settings. Malware types such as Mirai and BASHLITE were
responsible for mass-scale distributed denial-of-service (DDoS)
attacks that threatened to compromise the stability and reliability of
critical infrastructures (Qiu et al., 2025).

Despite the scope of the problem, the academic community is
marred by an after-all shortage- the lack of realistic and publicly
available botnet datasets that can potentially aid in intrusion and
anomaly detection model development and evaluation. Those
datasets that are available tend to be antiquated, artificial, or fail to
adequately represent real-world loT traffic, thus weakening and
limiting the scope of put-forward security interventions (Ayad et al.,
2024). This limitation has weakened the creation of scalable and
reliable anomaly detection processes capable of mitigating
emerging loT attacks.

Recent works have sought to overcome this challenge by using
deep learning and hybrid detection methods. Somma (2025) is a

case in point, with the study exploring temporal differential
consistency autoencoders for enhanced anomaly detection in
cyber-physical systems. The same goes for Shah et al. (2024), who
proposed a hybrid deep learning model for loT botnet detection. All
these efforts indicate the urgency of the issue, coupled with the
new solutions being explored. However, there are concerns with
dataset variability, real-time tunability, and adaptability to evolving
attack patterns (Shah et al., 2024).

This study is motivated by the immediate necessity of bridging the
dataset gap in loT botnet research. With real traffic records of
compromised commercial loT devices infected with Mirai and
BASHLITE, it would provide a more realistic platform for the
evaluation of anomaly detection models. In toto, the paper fulfills
its contribution towards the advancement of loT security through
bridging the gap between theoretical model development and
practical applicability.

Present studies have shown major advancements in anomaly
detection systems for loT and networks with attempts for higher
precision, computational complexity, and feature abstraction.
Alaghbari et al. (2023) suggested a deep autoencoder-based
combined model that focused on detecting anomalies and feature
abstraction together. Their approach demonstrated strong
detection performance with reduced computational complexity
compared to OC-SVM (One-Class Support Vector Machine) and
Isolation Forest algorithms. However, their model was primarily
static network information-based and failed to fully explore real-
time flexibility or temporal modeling of behavior.

Rhachi, Balboul, and Bouayad (2023) emphasized the growing
security concerns in Internet of Things (loT) networks, more
particularly, how challenging it is to determine anomalies due to the
unpredictability and dynamic nature of these environments. Their
paper suggested a deep autoencoder (DAE) with ANOVA F-test
feature selection to enhance the precision in the detection of
anomalies. While their approach improved detection performance
85% and 92% for binary and multi-class, respectively, the study
was based mostly on the NSL-KDD dataset, which is not
representative of modern real-world loT traffic. Moreover,
deployment challenges on embedded or limited-resource devices
are yet to be thoroughly investigated.

Torabi et al. (2023) explored a smarter way to detect unusual
network activity by using an autoencoder model that measures how
much the system’s reconstruction of data differs from the original.
Instead of treating reconstruction error as a single value, they
looked at it feature by feature, which made the model better at
spotting subtle irregularities in cloud network traffic. Their
experiments on the CIDDS-001 dataset showed clear
improvements in accuracy, recall, and F1-score compared to older
methods.

What makes their work stand out is the way they refined how

Autoencoder-Based Model for Detecting IOT Network Traffic Anomalies

1377

2
=
)=
<
=
O
S
©
L)
n
[}
o
=
=S
o
=
)
-
=
(s

https://dx.doi.org/10.4314/swj.v20i4.8
http://www.scienceworldjournal.org/
mailto:bakohaliluegga@nsuk.edu.ng

Science World Journal Vol. 20(No 4) 2025
www.scienceworldjournal.org

ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)
Published by Faculty of Science, Kaduna State University

https://dx.doi.org/10.4314/swj.v20i4.8

reconstruction errors are calculated and used to detect anomalies.
However, their model was only tested in controlled cloud
environments. This leaves an open question about how well such
a system would perform in real-world or loT settings, where
network data is often more complex and unpredictable. This gap
suggests a need for future research to adapt and test similar
approaches in dynamic, real-time scenarios.

Ali et al. (2024) introduced an innovative hybrid deep learning
model that combines Long Short-Term Memory (LSTM)
Autoencoders and Multilayer Perceptrons (MLP) to improve botnet
detection in loT settings. The model showed impressive accuracy
of 99.77% and 99.67% on the N-BaloT2018 and UNSW-NB15
datasets, respectively, performing better than conventional
detection schemes. This achievement highlights the increasing
importance of merging sequential pattern learning (via LSTM) with
non-linear feature extraction (via MLP) for identifying intricate
attack patterns.

Although the research attained great detection accuracy, it also
identified several limitations that limit scalability and real-world
applicability. These are server dependence, hybrid model
interpretability, and vulnerability to new attacks. Additionally,
system centralization also poses potential dangers to data privacy
and robustness since server compromise would expose sensitive
model parameters. Decentralized and light-weight designs were
proposed by the authors as future alternatives for the purposes of
increasing resource-limited loT devices' adaptability.

Following these findings, Qiu et al. (2025) introduced FedAware
(Federated Learning-based Intrusion Detection Model for 10T), an
loT intrusion detection system founded on federated learning that
integrates a Fractal Shrinking Autoencoder (FSAE) and one-class
SVDD classification. The ImbalMSE (Imbalanced Mean Squared
Error) algorithm by them improved model aggregation in non-iid
(Non-Independent and Non-Identically Distributed) devices to
manage heterogeneity and limited resources in distributed
environments. Despite high performance, FedAware did not utilize
advanced privacy-preserving methods or adversarial attack
robustness testing.

As a supplement to this computational method, Shah et al. (2024)
employed fractal-fractional calculus in the modeling of nonlinear
re-infection dynamics for infections such as COVID-19. The study
extended traditional differential equation models by the introduction
of fractal and fractional operators for expressing anomalous
diffusion processes as well as complex biological interactions.
Employing techniques such as the Volterra—Lyapunov method and
fixed-point theory, the study derived stability, sensitivity, and
numerical confirmation through comparative analysis based on real
data. While robust, the research highlighted the need to extend the
model to include additional compartments (e.g., quarantined,
exposed, vaccinated) and capture higher-order dynamical
interactions for more realistic simulations.

Based on those foundations, Somma (2025) introduced a Hybrid
Temporal Differential Consistency Autoencoder (hTDC-AE) to
identify anomalies in cyber-physical systems. Through the
integration of deterministic and statistical nodes into an
autoencoder structure, the model utilized physics-driven
consistency principles in machine learning. This allowed the
system to detect both gradual and sudden anomalies yet remain
computationally efficient enough for edge devices. The hTDC-AE
reported faster detection speed (3% improvement compared to
prior benchmarks) and interpretability, but also requested deeper
exploration of the theoretical consistency of static and dynamic

latent features.

To these advances, Al-Qudah (2025) offered a multi-step
comparative approach that rigorously assessed preprocessing and
modeling settings like RNN-LSTM, autoencoders, and Gradient
Boosting for anomaly detection in loT. His findings revealed that
Gradient Boosting yielded stable accuracy regardless of
configurations, but autoencoders fared best on recall, a critical
factor against false negatives. The work contributed a structured
experimental foundation for comprehending the interaction
between model selection and preprocessing, albeit largely
comparative rather than generative, with open issues regarding
adaptive model integration and automation.

Similarly, Ayad et al. (2025) introduced an efficient real-time loT
anomaly detection model via integration of a one-class asymmetric
stacked autoencoder and deep neural network (DNN). Their hybrid
method retained superior performance, 99.99% accuracy and 0.27
s detection time on the BoT-loT dataset and performed exceedingly
well in real-time scenarios. Nevertheless, despite the study
mentioning computational efficiency as well as class imbalance, it
only accounted for loT settings and not temporal feature
relationships or cross-domain adaptability in video-based or sensor
surveillance applications.

Synthesis and Gap
The literature review suggests three significant gaps:

Dataset Limitations: Synthetic or outdated datasets reduce the
usability and reliability of detection models.

Model Transparency and Generalizability: The majority of
models perform exceptionally well without addressing any potential
dataset bias or providing an interpretable thresholding technique.

Practical Deployment: Few techniques consider the
computational feasibility of deploying autoencoder-based anomaly
detection in practical loT scenarios.

This work fills these gaps with a publicly available loT botnet data
set that was collected from infected commercial devices with Mirai
and BASHLITE, which is realistic for evaluation. It also identifies
accurate anomaly thresholding methods and critically evaluates
model performance regarding possible dataset biases, thereby
creating robust, realistic, and transparent loT network anomaly
detection systems.

MATERIALS AND METHODS

This research focuses on a deep learning technique known as an
Autoencoder, implemented using the Python programming
language. The study employed secondary data collected from
Internet of Things (loT) devices, sourced from Kaggle
(https://www.kaggle.com/datasets/mkashifn/nbaiot-dataset). The
dataset contains traffic data from nine commercial loT devices that
were deliberately infected with Mirai and BASHLITE botnets. These
devices were used to capture real network traffic patterns, including
both benign and malicious activities. The dataset comprises
multivariate sequential data with a total of 7,062,606 instances and
115 attributes.

Dataset Analysis

The data used in this study is network traffic data, which contains
various forms of attacks and also benign traffic. The “type” column
labels each record as its respective class.

Data analysis shows a strong skewing of the distribution of traffic

Autoencoder-Based Model for Detecting IOT Network Traffic Anomalies

1378

https://dx.doi.org/10.4314/swj.v20i4.8
http://www.scienceworldjournal.org/
https://www.kaggle.com/datasets/mkashifn/nbaiot-dataset/data
https://www.kaggle.com/datasets/mkashifn/nbaiot-dataset

Science World Journal Vol. 20(No 4) 2025
www.scienceworldjournal.org

ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)
Published by Faculty of Science, Kaduna State University

https://dx.doi.org/10.4314/swj.v20i4.8

classes as seen in the bar plot and pie chart. The 'mirai_syn' type
of attack was the most dominant, with 30,643 instances (16.1%),
closely followed by ‘mirai_ack' (25,549; 13.4%), 'mirai_udp'
(23,766; 12.4%), and ‘mirai_udpplain’ (22,135; 11.6%). All these
four classes, together, make up a large majority of the dataset.

On the other hand, benign traffic is the least frequent category with
a paltry 12,387 instances (6.5%), showing an obvious imbalance.
The 'gafgyf attack types, i.e., gafgyt udp, gafgyt combo,
gafgyt_scan, and gafgyt_junk, are moderately frequent, occupying
the middle ground between common Mirai types and benign traffic.
This bias is a key characteristic of the dataset. The prevalence of
some Mirai attack varieties implies that they are common attacks
in test or real-world environments, and the absence of benign traffic
promotes distrust of the dataset design, potentially skewing
towards evil deeds.

From the modeling perspective, this imbalance is undesirable while
training network security models. Models might become biased
toward the more frequent attack types and thus reduce their
effectiveness when identifying less frequent attacks or correctly
distinguishing benign traffic. To avoid this flaw, future research
should endeavor to apply data balancing strategies, e.g.,
resampling, class weighting, or synthetic data generation, to
improve model generalization and offer effective detection across
all types of traffic.

Distribution of Attack Types (Bar Plot)

sets, typically using a subset of the data, such as the normal set
only (Alaghbari et al., 2023). AE consists of an encoder that
transforms the input data into a compressed form, known as
bottleneck features or latent space, and a decoder that transforms
the compressed data back into the original data. AE is used to
detect anomalies based on reconstruction error (RE) calculated
from the difference between the original and reconstructed
samples. To distinguish between normal and anomalous data, it
usually produces higher RE for anomalous samples than for normal
samples (Alaghbari et al., 2023). In addition to that, it can be used
as a feature extraction technique, where the compressed data is
used for other purposes such as classification (Yeom et al., 2020).
Auto-encoder comprises two portions, the encoder and decoder. In
other research, there are three components, and the third
component is a middleware between both, known as code.
Encoders: The input data is compressed and represented in a
smaller dimension by the encoder layer, which makes the
compressed data appear to be the original data, but it is not.
Code: An encoder, also known as a bottleneck layer and denoted
by the letter z in architecture, maps input space into lower lower-
dimensional latent space. It now represents unsupervised data in
a lower-dimensional manner. The component known as code is
what the decoder receives as compressed input.

Decoder: The decoder extracts the original data of the same
dimension from the encoded data. When the data is moved from
the lower latent space by the decoder, the dimensionality of the
output x bar matches output x in the reconstruction stage. If we
consider it in terms of data compression, there is lossless
compression, but auto-encoders use lossy compression involves
reducing and then uncompressing the input. It requires an effort to
be close to the input when it is uncompressed, but the outcome is
different. (Agrawal, 2022).

The autoencoder-based model in Figure 1 was designed for
detecting network traffic anomalies. It comprised the following
layers: (i) Input, (i) Encoder, (iii) Bottleneck, (iv) Decoder.

o R & & & S0 & & & &
& & & @j@ @@\‘,’L 4@‘“ & 5 &aﬁ*? @\‘Sp &
¢ - > >
S —>
Figure 1: Distribution of Attack Types (Bar Plot) > ?
Input —> —> Output
Distribution of Attack Types (Pie Chart) x x
benign % .ﬁ
mirai_syn . B a
gafgyt_junk
—> —

gafgyt_scan

mirai_ack

gafgyt_combo

gafgyt_udp
mirai_udp

mirai_udpplain

Figure 2: Distribution of Attack Types (Pie Chart).

Autoencoder
An autoencoder (AE) is a nonlinear unsupervised learning model
that is trained to minimize the error between the input and output

Figure 3: Auto-encoders Architecture Adopted from (Alaghbari et
al., 2023).

Autoencoder Proposed Architecture

The autoencoder used for anomaly detection consists of six main
components: Input Layer, Encoder, Bottleneck, Decoder,
Reconstructed Output, and Anomaly Detection Module. The input
layer receives network traffic data x and feeds it into a series of fully
connected layers of the encoder that sequentially compact the
representation of data into the low-dimensional latent space, also
known as the bottleneck. This layer preserves the majority of the
significant features of normal traffic patterns and excludes noise
and redundancy.

The decoder is also a reversed architecture of the encoder,

transforming the input data X back from the latent space. The
model is trained to minimize the reconstruction loss, typically in

Autoencoder-Based Model for Detecting IOT Network Traffic Anomalies

1379

https://dx.doi.org/10.4314/swj.v20i4.8
http://www.scienceworldjournal.org/

Science World Journal Vol. 20(No 4) 2025
www.scienceworldjournal.org

ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)
Published by Faculty of Science, Kaduna State University

terms of Mean Squared Error (MSE) between reconstructed output
and input:

1 o~
L =—3L (- %)° (1)

Training Process

The process of learning includes training the autoencoder with
normal traffic data alone such that the model acquires knowledge
of normal network behavior. Since the autoencoder learns only
normal patterns, it is kept aware of nonconforming deviations from
learned knowledge. The parameters of the model are optimized
using the Adam optimizer with learning rate tuned for convergence
stability. Training continues until reconstruction loss is stabilized,
indicating that the model has learned the normal distribution of
data.

Threshold for Anomaly Determination
After training, the model calculates the reconstruction error per
data point. Data points that produce higher-than-normal
reconstruction errors are flagged as potential anomalies. The
threshold for anomaly detection is statistically determined from the
distribution of the reconstruction errors over the training set. That
is, a cutoff value is chosen by one of the following methods:
1) Mean and Standard Deviation Rule:
T=u+ko)

where (t and o are the mean and standard deviation of

reconstruction errors from normal data, and (k) is an

empirically chosen factor (commonly between 2 and 3).
2) Percentile-Based Thresholding: Selecting a cutoff based

on the 95th or 99th percentile of the error distribution.

The data point is classified as anomalous if the reconstruction error
E=|x—2Zx|
surpasses the threshold T. This method guarantees an objective,
data-driven method of differentiating between typical and
anomalous patterns.
The trained autoencoder is used in deployment to process newly
received loT traffic data. The reconstruction error is calculated in
real time by the system. The behavior is categorized as normal if
the error stays below the threshold and as anomalous otherwise.
Without the need for manual labeling, this procedure allows for
real-time, unsupervised anomaly detection that adjusts to various
loT environments.

Input Layer Encoder Bottenleck Reconstructed Anomaly
Output Detection
| Module

>

g .

oo —

& @ ®— Anomaly
. Y Detection
.' Fa Gm—

@ ®—

;. L3

Decoder

Figure 4: Proposed Architecture

Mathematical Formulation of Model
Let's denote the following variables:

https://dx.doi.org/10.4314/swj.v20i4.8

X: Input data, representing network traffic data

samples.

e Xi A specific data sample in the dataset X

e H: Hidden layer representation in the
autoencoder.

e Hi: Hidden layer representation for data sample

Xi.

D: Output reconstruction of the autoencoder.

Di: Output reconstruction for data sample Xi.

E: Reconstruction error.

Ei: Reconstruction error for data sample Xi.

N: Number of input features (dimensions) in each

data sample.

e M: Number of neurons in the hidden layer of the

autoencoder.

Data Preprocessing:
Normalize the input data (X) to have a zero mean and unit variance.

Autoencoder Architecture:

The autoencoder includes a hidden layer with M neurons, an output
layer with N neurons, and an input layer with N neurons.
(Reconstruction layer).

Encoding:
The encoding operation from input (Xi) to hidden representation
(Hi) is given by:
Hi= fencode (Wencode*Xi + bencode)
©)
where Wencode is the weight matrix and bencode is the bias vector for
the encoding operation, and fencoce is the activation function

Decoding:
The decoding operation from hidden representation Hi to
reconstruction Di is given by:
Di = fdecode (Waecode * Hi + bdecode)

(4)
where Waecode is the weight matrix and beecode is the bias vector for
the decoding operation, and decode faecode iS the activation
function.

Reconstruction Error:
Calculate the reconstruction error Ej for data sample (Xi) as the
difference between (Xi) and its corresponding reconstruction (Di):
Ei=Xi-Di

(5)
Anomaly Detection:
Define a threshold (T) for anomaly detection. Data samples with
reconstruction errors (Ei) exceeding this threshold are considered
anomalies.

Training:

The autoencoder is trained to minimize the mean squared error

(MSE) between the input data (X/) and its reconstruction (Di)
MSE =~ ¥\ (Xi,j = Di,j)? (6)

The optimization process adjusts the weights and biases (Wencode,

Woecode, bencode, Baecode) to minimize the reconstruction error.

Autoencoder-Based Model for Detecting IOT Network Traffic Anomalies

1380

https://dx.doi.org/10.4314/swj.v20i4.8
http://www.scienceworldjournal.org/

Science World Journal Vol. 20(No 4) 2025 https://dx.doi.org/10.4314/swj.v20i4.8
www.scienceworldjournal.org

ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)

Published by Faculty of Science, Kaduna State University

RESULTS AND DISCUSSION autoencoders, we must evaluate the model using important
Here, the study results are discussed and presented. Results are measures of performance. These include Accuracy, Precision,
depicted in the following tables and figures. For accurate and Recall, F1-Score, and ROC Curves.

reliable predictions in deep learning, particularly with deep

Table 1: Confusion Matrix's Predicted and Actual Class Parameter

Actual Class Predicted TP FP FN N
Class

benign benign 2422 2 3 35750
gafgyt_combo gafgyt combo 2810 151 63 35066
gafgyt_junk gafgyt_junk 2762 151 60 35066
gafgyt_scan gafgyt scan 3074 9 2 35054
gafgyt_udp gafgyt_udp 3164 3 2 35043
mirai_ack mirai_ack 5058 14 7 33133
mirai_scan mirai_scan 3240 1 0 34971
mirai_syn mirai_syn 6185 0 0 31996
mirai_udp mirai_udp 4746 17 15 33392
mirai_udpplain mirai_udpplain 4466 0 0 33650

True Positives (TP): These are the correctly predicted positives Table 2: Performance measures and the percentages of the model
as normal traffic, which means that the value of the actual class is Accuracy Precision Recall Fi-Score
normal, and the value of the predicted class is also normal traffic. 3 OCIITE DoETEE] GEITEND mEETis
True Negatives (TN): These are the correctly predicted as an
attack, which means that the value of the actual class attack is
equal to the value of the predicted class attack. 0994448 0.948163
False Positives: In our result, this shows the actual class is 3 0999633 0996111 0999350 0997728
abnormal traffic/malware, but the classifier predicted it as normal 0.999921 0.999684 0999368 0.999526
traffic 0.999476 0.997436 0998618 0.998027
False Negatives: The actual class is normal traffic, but the
classifier predicts it as an attack.

0.994212 0.978412 0946447 0962164

0978392 0.953040

0.999974 1000000 0999691 0.999846

0999974 0.999838 1.000000 0.999919

Confusion Matrix 5 0.999555 0.999579 0996849 0998212
benign - 2422 2 o 3 o o o o o o - 6000
0999738 0.998212 0999552 0998382
gafgyt_combo - 1 [2810| 151 7 o o o o o o
- s000
gafgyt_junk - o0 co |2762(1 o o o o o o
gafgyt_scan - 2 o o o o o o o o L 2000
" " Training and Validation Loss
_ oafgyrudp- 1 o o 1 o o o o o
£ | 3000 0.40 - Training Loss
¥ waack- o o o o o o o 2 s Validation Loss

mirai_scan - 0 o o o o o 1 o o
- 2000

mirai_syn - 0 o o o o o o o o
mirai_udp - © o o o 1 11 o o 3 - 1000

mirai_udpplain - ©

3
$

benign -
gafgyt_junk
gafgyt scan -
gafgyt udp
mirai_ack -
mirai_scan -
mirai_syn -
mirai_udp -
mirai_udpplain

gafigyt_combo -

Predicted

Figure 5: Confusion Matrix

o 20 40 60 80 100
Epoch

Fi 4 sh h I the Aut der-based mal
'guré & Shows now wel e Aulosncoderbasec mawars Figure 5A: Loss Comparison of AutoEncoder-Based Models.

detection system performs using a confusion matrix. The matrix
compares what the model predicted with the actual malware types.
Each row represents the true class, and each column represents
the predicted class. The darker the color in a cell, the more often
that combination occurred. The diagonal cells show correct
predictions, while the off-diagonal ones show where the model got
it wrong. By looking at this, we can see which malware types the
model identifies accurately and which ones it tends to confuse.
Overall accuracy is determined by dividing the number of correct
predictions by the total cases.

Autoencoder-Based Model for Detecting IOT Network Traffic Anomalies 1381

https://dx.doi.org/10.4314/swj.v20i4.8
http://www.scienceworldjournal.org/

Science World Journal Vol. 20(No 4) 2025
www.scienceworldjournal.org

ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)
Published by Faculty of Science, Kaduna State University

Training and validation accuracy

1.00 A

0.98

0.96

0.94 -

0.92 4

0.90 4

0.88

0.86

training
validation

0.84

o] 20 40 60 80 100
epoch

Figure 6: Accuracy Comparison of AutoEncoder-Based Models.

In Figures 5 and 6, the first plot shows both the training and testing
sets' accuracy values. The accuracy values are displayed on the y-
axis, and the epoch number is displayed on the x-axis. The
accuracy is shown by the blue line. Values for the training set, while
the orange line represents the accuracy values for the testing set.
The legend indicates which line represents which set. The second
plot shows the loss values for both the training and testing sets.
The y-axis represents the loss values, while the x-axis represents
the epoch number. The blue line represents the loss values for the
training set, while the orange line represents the loss values for the
testing set. The legend indicates which line represents which set. it
is also noted that the model's accuracy is increasing with each
epoch, and the loss is decreasing, which indicates that the model
is learning from the data and is not overfitting. It is also important
to note that the accuracy values for the testing set are not too far
behind the accuracy values for the training set, which indicates that
the model is generalizing well and can make accurate predictions
on new, unseen data.

Diagonal of Confusion Matrix

6000

5500 A

5000

4500 A

Count

4000

3500 4

3000 A

2500

(\\0’(‘ (i\c’o & & S & & &5
& & @O &7 & @ &7 &7 &7 &
oF ¢ T8 T

Class

Figure 7: Diagonal of the Confusion matrix

In Figure 7 showing the number of data points properly separated
by an autoencoder-based model is represented by a diagonal of
the confusion matrix. A higher value of the diagonal indicates that
the model can correctly classify more data points.

https://dx.doi.org/10.4314/swj.v20i4.8

ROC Curves for Each Class

LE] -

o
kS

\
\

- —— Class 0 (AUC = 1.00)

- Class 1 (AUC = 1.00}

- —— Class 2 (Auc = 1.00)

- —— Class 3 (AUC = 1.00)

- —— Class 4 (AUC = 1.00)

- —— Class 5 (AUC = 1.00)
02 g Class 6 (AUC = 1.00}
- — Class 7 (AUC = 1.00)

- Class 8 (AUC = 1.00}

- ~——— Class 9 (AUC = 1.00)

True Positive Rate
\

o

=

\
\

0.0+ i - . v
0.0 02 0.4 06 0.8
False Positive Rate

Figure 8: ROC Curves for Each Class

In Figure 8, the graph visualizes ROC (Receiver Operating
Characteristic) curves for each class in an instance containing
several classes. The effectiveness of a binary classification model
is evaluated using ROC curves at various classification thresholds.
Our model generates the AUC (area under the ROC curve) score
(AUCAE = 1.00) with a very high true positive rate and a low false-
positive rate, exhibiting its great performance.

Autoencoder-Based Classification Model Prediction

This Autoencoder-Based Classification Model Prediction Report for
Excel File Data summarizes the predictions made by a trained
classification model based on an autoencoder on imported data
from the Excel file
‘/content/drive/MyDrive/network/gafgyt.scan_datase.xIsx'.

The model, designed to identify types of network traffic, analyzed
the input data and produced the following predicted class labels in
Figure 9:

h——— — @s 59ms/step

Jusr/local/lib/python3.11/dist-packages/sklearn/utils/validation.py:2739:
warnings.warn(

1/1 ——————————— @s 83ms/step

Predicted class labels for the data in the Excel file:

['mirai_udpplain’ ‘mirai udpplain’ ‘mirai_syn' ‘mirai udpplain’
‘mirai_udpplain’ 'mirai udpplain' 'mirai udpplain’ ‘mirai_udpplain’
‘mirai udpplain® ‘mirai udpplain' ‘mirai udpplain® ‘mirai udpplain’
‘mirai_udpplain® ‘mirai_udpplain']

Figure 9: Predicted Class Label

From these correlations, it can be seen that most of the traffic within
the dataset has been labeled as 'mirai_udpplain', which is generally
linked with the Mirai botnet that utilizes UDP flooding to flood
network services. A single data point was labeled as ‘mirai_syn',
which indicates the existence of SYN flood behavior, one type of
attack that targets draining server resources.

Presence of 'mirai_udpplain' indicates likely UDP flood attack
signatures in the respective traffic. Existence of 'mirai_syn' would
indicate a mix of TCP SYN flood signatures, which could be used
as one of the multi-vector attack approach vectors. This signature
pattern may suggest that the network traffic in question is made up
of malicious botnet operations and could require further analysis or
protection measures.

Conclusion

This study developed an autoencoder-based model for detecting
network traffic anomalies and achieved an impressive accuracy of
99%. The results show that the model can effectively identify

Autoencoder-Based Model for Detecting IOT Network Traffic Anomalies

1382

https://dx.doi.org/10.4314/swj.v20i4.8
http://www.scienceworldjournal.org/

Science World Journal Vol. 20(No 4) 2025
www.scienceworldjournal.org

ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)
Published by Faculty of Science, Kaduna State University

unusual network behavior, making it a promising tool for detecting
potential cyberattacks.

However, there are a few limitations to note. The model was tested
on a specific dataset, which means its performance in real-world
networks may vary. Also, training deep autoencoders requires high
computational power, which might make it difficult to use on small
or low-resource devices.

In the future, it would be valuable to test this model on real-world
loT systems and across multiple datasets to confirm its reliability.
Improving the model to handle live, streaming data for real-time
anomaly detection and making it more lightweight for use on edge
devices are also important directions for further research.

REFERENCE

Agrawal, R. (2022, January 10). Complete guide to anomaly
detection with autoencoders using TensorFlow.
Analytics Vidhya.
https://www.analyticsvidhya.com/blog/2022/01/complet
e-quide-to-anomaly-detection-with-autoencoders-
using-tensorflow/.

Alaghbari, K. A,, Lim, H. S., Saad, M. H. M., & Yong, Y. S. (2023).
Deep autoencoder-based integrated model for anomaly
detection and efficient feature extraction in iot
networks. loT, 4(3), 345-365.

Alaghbari, K. A., Saad, M. H. M., Hussain, A., & Alam, M. R. (2022).
Activities recognition, anomaly detection and next
activity prediction based on neural networks in smart
homes. IEEE Access, 10, 28219-28232.

Ali, S., Ghazal, R., Qadeer, N., Saidani, O., Alhayan, F., Masood,
A, ... & Gupta, D. (2024). A novel approach of botnet
detection using hybrid deep learning for enhancing
security in loT networks. Alexandria Engineering
Journal, 103, 88-97.

https://dx.doi.org/10.4314/swj.v20i4.8

Al-Qudah, M., & AlMahamid, F. (2025, April). A Multi-Step
Comparative Framework for Anomaly Detection in loT
Data Streams. In 2025 International Conference on
New Trends in Computing Sciences (ICTCS) (pp. 432-
439). IEEE.

Ayad, A. G., El-Gayar, M. M., Hikal, N. A., & Sakr, N. A. (2024).
Efficient Real-Time anomaly detection in loT networks
using One-Class autoencoder and deep neural
network. Electronics, 14(1), 104.

Qiu, K., Yan, M., Luo, T., & Chen, F. (2025). FedAware: a
distributed IoT intrusion detection method based on
fractal shrinking autoencoder. Journal of King Saud
University Computer and Information Sciences, 37(7),
1-21.

Rhachi, H., Balboul, Y., & Bouayad, A. (2025). Enhanced Anomaly
Detection in loT Networks Using Deep Autoencoders
with Feature Selection Techniques. Sensors, 25(10),
3150.

Shah, K., Sarwar, M., & Abdeljawad, T. (2024). A comprehensive
mathematical analysis of fractal-fractional order
nonlinear re-infection model. Alexandria Engineering
Journal, 103, 353-365.

Somma, M. (2025). Hybrid Temporal Differential Consistency
Autoencoder for Efficient and Sustainable Anomaly
Detection in Cyber-Physical Systems. arXiv preprint
arXiv:2504.06320.

Torabi, H., Mirtaheri, S. L., & Greco, S. (2023). Practical
autoencoder based anomaly detection by using vector
reconstruction error. Cybersecurity, 6(1), 1.

Yeom, S., Choi, C., & Kim, K. (2020, September). AutoEncoder
based feature extraction for multi-malicious traffic
classification. In The 9th International Conference on
Smart Media and Applications (pp. 285-287).

Autoencoder-Based Model for Detecting IOT Network Traffic Anomalies

1383

https://dx.doi.org/10.4314/swj.v20i4.8
http://www.scienceworldjournal.org/
https://www.analyticsvidhya.com/blog/2022/01/complete-guide-to-anomaly-detection-with-autoencoders-using-tensorflow/
https://www.analyticsvidhya.com/blog/2022/01/complete-guide-to-anomaly-detection-with-autoencoders-using-tensorflow/
https://www.analyticsvidhya.com/blog/2022/01/complete-guide-to-anomaly-detection-with-autoencoders-using-tensorflow/

