

DETERMINATION OF SUSCEPTIBILITY PATTERNS OF GINGER (*ZINGIBER OFFICINALE ROSCOE*) GENOTYPES TO EPIDEMIC DISEASES IN KADUNA STATE, SOUTHERN GUINEA SAVANNA, NIGERIA

*^{1,2}Akos I.S., C. ²Clement, J. ³Maiangwa and E.D. ²Shamaki

¹Department of Crop Science, Kaduna State University, P.M.B 1010, Kafanchan Campus - Nigeria

²Department of Crop Protection, Kaduna State University, Kafanchan Campus - Nigeria

³Department of Microbiology, Kaduna State University, Kaduna-Nigeria

*Corresponding Author Email Address:ibrahim.akos@kasu.edu.ng

ABSTRACT

Ginger (*Zingiber officinale roscoe*) is a herbaceous, perennial, tropical and subtropical rhizomatous plant, grown extensively in southern Kaduna. It has several uses from pharmaceutical to food industries. The occurrence and distribution of disease on ginger cultivated in Kaduna State and the disease pathogen responsible for ginger losses were determined in this study. In this study, field survey was carried out and samples of leaves, rhizomes and soils (under the rhizomes) were collected in two most cultivated locations in six (6) local government areas of Jema'a (KASU JSQ & KASU SSQ), Kachia (Gibir & U/Sarki), Kagarko (Dogon Kurmi & Kagarko), Kaura (GCK & KGR Pada), Jaba (Sambar & Jaban Kogo), and Zongon Kataf (Zauru & U/Rimi). Several species of fungi, bacteria and nematodes were isolated from the collected samples across the sampling locations. Incidences of fungal species (15); *Aspergillus fumigatus* & *Aspergillus niger* with 17 isolates each, and *Fusarium solani* with 15 isolates were recorded, while in bacteria, 10 species incidences existed with *Bacillus* spp., *Micrococcus* sp and *Citrobacter* spp with 22, 17 and 16 isolates occurrence respectively. Nematodes had 10 different species occurrences with 15 of *Trichodorus* sp and 13 of *Meloidogyne* spp. Overall, fungi were the most frequently encountered pathogens across all LGAs, followed by bacteria, with nematodes being the least prevalent.

Keywords: Susceptibility patterns, ginger, genotypes

INTRODUCTION

Ginger (*Zingiber officinale* Roscoe) is a tropical and subtropical perennial, herbaceous plant revered as one of the most popular and valued spices of the world (Sodangi, 2020; Uddin *et al.*, 2023). The ginger plant takes its origin from South-Eastern Asia but has over the centuries been introduced to various parts of the world (Ravindran and Nirmal, 2016; Bodhare, 2023). Though the entire plant is refreshingly aromatic, the most useful part of this plant is the underground rhizome. Ginger is in the family Zingiberaceae, which also includes turmeric (*Curcuma longa* L.), and cardamom (*Elettaria cardamomum* L.). The ginger plant has a thick, branched rhizome (underground stem) with a brown outer layer and yellow centre that has a spicy, citrusy aroma (Wang, 2020; IUCN, 2022). Every year, it grows pseudostems (false stems made of tightly wrapped leaf bases) from the rhizome which bears narrow leaves (IUCN, 2022). The inflorescences bear flowers which grow on separate, shorter stems in a cone-shaped spike and are pale

yellow in colour with purplish edges. The shoot measures about 30-100 cm above the ground with long, narrow, ribbed leaves which are 15-20 cm long and 1-3 cm wide (Yang and Rahmawati, 2022). Besides being used as a spice, ginger is also used to produce oil, oleoresin, essences, soft drinks, and non-alcoholic beverages. Ginger also has manifold medicinal properties as a carminative and stimulation of gastro-intestinal tracts (Aregawi *et al.*, 2022). Its uses extend to food and beverages industries, and pharmaceutical. It has great economic potentials with export for Nigeria and in the producing communities because of the value chain and several other uses (Bulus, 2020; Jamir, 2022).

In 2021, ginger production in Nigeria stood at 768,304 tonnes as the second highest producer in the world after China (FAOSTAT, 2021). Although ginger cultivation has now spread all over the geographical zones of Nigeria (Duniya, 2003; Bernard, 2008; Odifa, 2022), Kaduna State is the traditional home of ginger production in Nigeria (Erlie, 1988; Nair, 2013) and remains the country's leading producer of the crop, mainly from Jaba, Jama'a, Kachia, Kagarko and Zongon Kataf Local Government Areas (Nmadi and Marcus, 2013; USAID-NEXTT, 2017; Odifa, 2022). Nematodes feed on the rhizomes, roots and base of the pseudo stems (Bulus *et al.*, 2020). It causes swellings or knots, rot of root, root cracking and deformation (Bulus *et al.*, 2020). In the above ground parts, it causes stunting of the plant, chlorosis and marginal necrosis of leaves. It also causes reduced vigor and tillering and dark brown necrotic lesion. These symptoms are caused not only by a single nematode species but different species of nematodes in a complex. Nematodes also predisposes the rhizome to fungal and bacterial attack through their entry points on the rhizome. As a result of these, about 74% weight of the rhizome can be loss (Meenu and Jeba, 2019). *Meloidogyne* sp., *Radopholus similis* and *Pratylenchus* sp. are major nematodes that cause significant loss to ginger (Meenu and Jeba, 2019).

Fungal diseases found in all ginger growing countries, reported as the most dangerous and destructive disease of ginger which can reduce the production by 50–90% (Dohroo, 2001). Disease cause significant losses during warm and humid conditions. Symptoms first appear on the aerial parts of the plant. Yellowing (chlorosis) symptoms appear in the tips, which then spread downward along the margin involving the rest of the leaf blade and eventually, the leaf sheath. Later, chlorosis from the older leaves progress to younger leaves, start developing a similar symptom progression until the entire plant dies (Meenu and Jeba, 2019). The appearance of lesion in pseudo stem and chlorosis in the leaf indirectly show

the sign of rhizome rot. Due to fungal infection, rhizomes appear soft, brown; water soaked, rotten, and decays gradually. Soft rot, wet rot, yellows, leaf spot, and storage rots are examples of fungal diseases of ginger (Meenu and Jeba, 2019).

Bacterial diseases of ginger constitute the most serious rhizome-borne diseases. Bacterial diseases are widespread and exceedingly destructive for ginger growing in tropical, subtropical and warm temperate regions of the world (Kumar and Sarma, 2005). Severity of bacterial diseases occurs during the favorable environmental conditions like high rain fall and warm weather. Symptoms include water soaked patches or linear streaks at the collar region of the pseudo stems. In the advanced stage, infected ginger exhibit intense yellowish and wilting symptoms. The leaves roll up and the whole plant dries up finally. Bacterial wilt and soft rot are common bacterial diseases of ginger (Kumar and Sarma, 2005).

As one of the top 10 cultivated crops in Nigeria (Omotayo *et al.*, 2021), it is also plague by pests and diseases caused by bacteria, fungi, viruses, mycoplasma and nematodes which largely affects production of ginger. Diseases cause severe reduction of rhizome yield (Sharma *et al.*, 2021; Meenu and Jebasingh, 2019). Some of these diseases have a worldwide distribution (Chikh-Ali *et al.*, 2019). The impact of these diseases is increased in the tropics because tropical conditions favour continuous presence of both primary and secondary hosts. Generally, Disease pathogens are significant constraints in agricultural production worldwide and sustainable crop production with losses in quality and quantity of spice crops and yield (Dohroo, 2016; Akhter *et al.*, 2019; Akhter *et al.*, 2021). The objectives of the research are to determine the occurrence and distribution of diseases on ginger in Kaduna state and to determine the disease pathogens responsible for ginger losses.

MATERIALS AND METHODS

Field Surveys and Sampling of Ginger Fields

Field survey was conducted during the 2024 rainy season to determine the occurrence of diseases on fields in six (6) Local Government Areas of Kaduna State. Namely; Jema'a(JEMA), Jaba(JBA), Kachia(KCH), Kagarko(KGK), Kaura (KUR) and Zangon Kataf (ZKW). These locations were selected based their recorded high ginger cultivation.

Experimental Site

The experiment was basically laboratory and was carried out at the Microbiology & Postgraduate laboratories of Nasarawa State University, Keffi - Nigeria and Kaduna State University, Kafanchan Campus respectively.

Sample Collection

Ginger plant rhizome, leaves and soils samples were collected in two (2) points for symptomatic per farm and two (2) farms each in six (6) Local Government Areas (L.G.As) of southern Kaduna State. The region is known for cultivation of higher quality ginger. The samples collected were twenty-four (24) (2 samples \times 2 farms \times 6 LGAs = 24). This basically is for determination of the presence of any of the disease pathogens of fungi, bacteria and nematodes.

Data collection

Ginger leaves showing symptoms of disease infection and their

rhizomes were randomly selected harvested fresh from fields and put into polythene bags for isolation and identification of the pathogen associated with the samples.

Samples were collected from the rhizosphere of the plants with the aid of a soil auger. This was collected at a depth of 0 – 30 cm and within a radius of 25 cm from the base of the plants. Selected farms were surveyed in each LGA. Each of the composite sample were packaged in a polyethylene bag, properly labeled and then transported for Nematology laboratory for nematode extraction.

Sample Preparation and Isolation of Nematodes, Fungi and Bacteria

Nematodes

Extraction of the nematodes from the soil samples was done using the modified sieving and decanting techniques as described by Coyne *et al.* (2007). One hundred millilitres (100 ml) of soil was collected from each of the composite soil sample and poured gently into a fifteen-litre plastic bucket containing five litres of water. These were stirred thoroughly, then allowed to settle for 30 seconds. Three quarters of the water was then slowly poured through a set of sieves (with 75 μ m nested on 45 μ m). The remaining soil in the bucket was filled with the same volume of water and the initial procedure to be repeated. Nematodes and tiny soil particles trapped by sieves were gently rinsed with water into a labelled beaker which was then poured into a setup of extraction tray containing a double cotton wool filter paper held in place by a clamping ring. These were allowed to stay for 24 hrs. After 24 hours, the filtrate containing nematodes was standardized to 100 ml by adding distilled water using a measuring cylinder. Ten millilitres of the nematode/water suspension was poured into a Doncaster (1962) counting dish for visual identification and counting of the different nematode genera using a dissecting microscope at X40 magnification.

Fungi

The rhizomes were washed with tap water and small portions of tuber samples about 5 mm around the periphery of rot lesions were excised with a knife. The tissues were sterilized in 5% sodium hypochlorite solution for two to three minutes and then rinsed three times with sterilized distilled water. The tissues were then plated on sabouraud dextrose agar (SDA) in Petri dishes and incubated at 25°C for five days. Sub-culturing of the various fungi was done on SDA to obtain pure cultures of the fungal isolates for identification. The isolated fungi were identified based on their colony morphology and conidial characteristics with the aid of a compound microscope (Hund Wetzel, H-500, Germany), with reference to the laboratory manuals developed by Mathur and Kongsdal (2003) and Barnett and Hunter (1998).

Bacteria

Isolation of bacteria from the ginger rhizome was carried out by standard microbiological culture technique adapted by Agu *et al.* (2015) with slight modification. The rhizome was washed with running distilled water and then surface sterilized with 70% ethanol and cut open. About 3mm diameter of the infected tissues was picked with a flamed sterilized forceps and inoculated in solidified Sabouraud Dextrose Agar (SDA) and Nutrient Agar (NA) medium. Each inoculum was placed on the surface of the solid medium and spread evenly on the plate with the aid of a sterile bent glass rod.

The inoculated NA plates was incubated at 37 degree Celsius for 24 hours at room temperature for 2-7days for the SDA plates.

Statistical Analysis

Descriptive statistics was used to determine occurrences and distribution of fungi, bacteria and nematodes in the six samples collected and ginger growing areas in southern Kaduna.

RESULTS

Ginger (*Zingiber officinale*) leaves, rhizomes and soils under the rhizomes of two (2) samples each from three farms in six prominent ginger cultivated local government areas of Kaduna State were collected. These samples were tested in the laboratory to determine the presence and possibly type of bacteria, fungi and nematodes responsible for the diseases affecting ginger cultivation in southern Kaduna State.

The disease symptoms shown on leaves and rhizomes were cultured in sabouraud dextrose agar (SDA) for fungi and nutrient agar (NA) for bacteria, while the soil samples were for the presence of nematodes.

Incidence of Fungi on ginger leaves and rhizomes

Fifteen Fungal pathogens were isolated in the sample locations with various level of occurrences: *Aspergillus fumigatus*(17), *Mucor racemosus* (11), *Rhizopus* spp (11), *Penicillium restrictum*(7), *Trichoderma viride*(12) ,*Aspergillus niger* (17) ,*Cladophialophora carrionii* (10) , *Fusarium Graminearum* (13) *Fusarium solani* (15), *Alternaria tenuis* (13), *Lichtheimia corymbifera* (9), *Microsporum canis* (14), *Alternaria tenuis* (11), *Lichtheimia corymbifera* (3), *Microsporum ferrugineum* (9). *A. fumigatus* and *A. niger* had equal and highest occurrences, while *L. corymbifera* was the least occurring fungal pathogen recorded. However, the distribution of disease incidences in ginger fields across the six LGAs is presented in Figure 1. Fungi were the most dominant group of pathogens, with incidences per field ranging from 9 to 19. The highest fungal incidence was recorded in Kachia LGA (19 in Gibin) and Zangon Kataf LGA (18 in Zauru), while the lowest was in Kachia (9 in U/Sarki).

Incidence of Bacteria on ginger leaves and rhizomes

The presence of various species of bacteria when cultured on nutrient agar (NA) suggests potential bacterial infection on ginger. The following bacteria were isolated on the growth media: *Pseudomonas* sp.; *Gluconbacter* sp.; *Proteus* sp.; *Bacillus* sp.; *Enterococci* sp.; *Acetobacter* sp.; *Flavobacterium* sp.; *Micrococcus* sp.; *Simulium* sp.; *Citrobacter* spp (Table 2). All these were found on either the leaves or rhizomes of ginger in the 6 ginger cultivated L.G.As. However, not all the ten bacteria were found in each of the locations. The presence of *Bacillus* sp. was observed from the rhizomes and leaves of ginger in all locations of Zangon Kataf, Jaba, Kaura, Kagarko and Jema'a L.G.As, *Gluconbacter* species and *Micrococcus* species were found in all the locations and samples (rhizomes and leaves) in Kachia and Jema'a L.G.As respectively.

The total occurrences of the bacteria diseases recorded among the most cultivated L.G.A is shown in Figure 1, which indicates the presence of *Bacillus* species in all the sample location in the 6 areas, followed by *Micrococcus* species and *Citrobacter* species.

Incidence of Nematodes on ginger rhizomes and soil

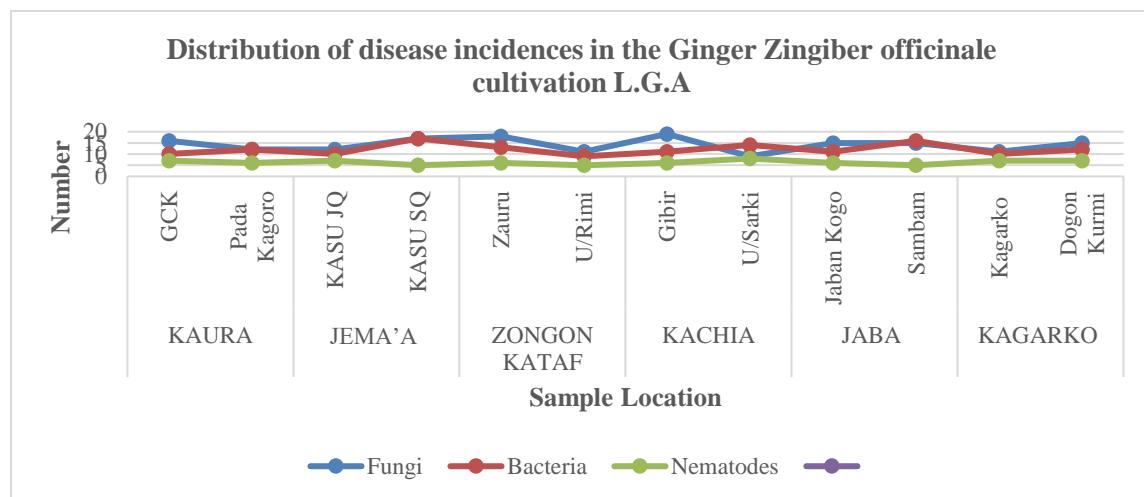
The ginger rhizosphere is infested with a complex of nematodes that cause direct root damage (galls, lesions, stunting) and act as vectors for other diseases. In Table 3, diverse community of 10 genera of plant-parasitic nematodes were identified in the surveyed areas. *Trichodorus* sp. and *Meloidogyne* sp. are the two most significant nematode pathogens identified. The most predominant nematodes being *Trichodorus* sp. with 15 isolates, closely followed by *Meloidogyne* sp. with 13 isolates and *Aphelenchoides* spp. (10 isolates). However, other nematodes of concerned that were identified included, *Tylenchorhynchus* sp. (8 isolates) *Helicotylenchus* sp. (8 isolates), *Pratylenchus* sp. (6 isolates) and *Scutellonema* sp. (6 isolates). The overview of pathogen groups across the six LGAs is as shown in Figure 1. Fungi were found in every single location and consistently had the highest or near-highest number of occurrences.

Table 1: Occurrence of Fungi in Six (6) Ginger Cultivated L.G.A in southern Kaduna, Kaduna State-Nigeria

	Isolates (Bacteria)												Number of Isolates												
	Z/KF-Zauru	Z/KF-Zauru	Z/KF-	Z/KF-	JABA-	JABA-	JABA-Jaban	JABA-Jaban	KRA-Lenk	KRA-	KRA-Pada	KRA-Pada	KCH-Gibir	KCH-	Gibir	KCH-U/Sarki	KCH-U/Sarki	KGK-Dogon	KGK-	JEMA- KASU	JEMA- KASU	JEMA-KASU	TOTAL		
<i>Pseudomonas</i> sp	3	2	0	2	3	1	2	0	2	0	2	1	0	2	0	3	3	1	3	0	1	2	2	0	14
<i>Gluconobacter</i> sp	2	0	0	0	2	0	2	1	2	0	0	0	1	2	1	2	2	0	2	0	3	3	0	1	12
<i>Proteus</i> sp	0	2	1	0	2	1	0	0	0	0	2	0	2	0	0	2	2	1	0	1	2	0	0	2	12
<i>Bacillus</i> sp	2	1	1	2	3	1	2	1	2	1	3	1	1	0	0	3	3	1	3	2	1	3	3	4	22
<i>Enterococci</i> sp	0	2	0	0	1	0	2	0	2	1	0	1	0	2	1	1	0	0	0	0	2	1	0	0	10
<i>Acetobacter</i> sp	1	2	1	0	2	1	2	0	3	0	0	0	1	2	0	2	1	0	0	0	1	0	3	2	14
<i>Flavobacterium</i> spp	2	3	0	0	2	0	2	0	1	0	2	2	0	2	0	2	0	0	3	0	0	2	1	0	12
<i>Micrococcus</i> sp	0	0	3	1	1	1	3	0	2	0	3	1	0	2	1	2	2	1	2	0	3	3	1	0	17
<i>Simulium</i> sp	0	1	1	0	3	0	2	0	1	0	0	0	0	0	0	3	1	0	1	0	1	3	0	0	10
<i>Citrobacter</i> spp	2	0	2	0	3	2	1	0	0	0	2	1	0	2	1	1	1	0	3	1	1	1	0	1	16

Z/KF-Zauru RZ (N=3) means out of 3 samples 3 *Aspergillus fumigatus* were isolated; JEMA-KASU RZ (N=3) means out of 3 samples 0 no *Aspergillus fumigatus* were isolated. Z/KF-Zauru RZ (N=3) means out of 3 samples 0 number of *Mucor racemosus* were isolated, out of 3 samples from Z/KF-Zauru LF (N=3) 1 *Mucor racemosus* was isolated; LF- leaf samples; RZ-Rhizomes; Z/KF- Zongon Kataf; Jema-Jema'a; KRA-Kaura; KCH-Kachia; KGK-Kagarko.

Table 2: Occurrence of bacteria isolated from root (Rhizomes) and leaves of Ginger in Six (6) most cultivated L.G.A in southern Kaduna, Kaduna State-Nigeria


	Isolates (Fungi)												Number Isolated												
	7/KF-Zauru (R7)	7/KF-Zauru (I F)	7/KF-II/Rimi (I F)	KCH- Gibir (R7)	KCH- Gibir (LF)	KCH- U/Sarki (RZ)	KCH- U/Sarki (LF)	KRA-Lenk Pada (I F)	KRA-Lenk Pada (R7)	KRA-GCK Pada (R7)	KRA-GCK (I F)	JARA-Samhan (I F)	JARA-Jahan	Knnn	JARA-Jahan	Knnn	JARA-Samhan (R7)	JFMA-KASU (I) (R7)	JFMA-KASU (I) (I F)	JFMA-KASU (I) (S0/I F)	JFMA-KASU (I) (S0/R7)	KGK-Kagarko 1 (RZ)	KGK-Kagarko 1 (LF)	KGK-Dogon	TOTAL
<i>Aspergillus fumigatus</i>	3	1	0	2	2	1	2	0	0	1	0	2	2	1	3	1	3	2	1	0	0	0	1	0	17
<i>Mucor racemosus</i>	0	1	0	0	0	0	0	1	0	1	0	1	2	2	2	0	0	0	0	2	0	0	0	1	11
<i>Rhizopus</i> spp	0	0	1	0	1	2	2	0	0	0	0	0	1	0	0	0	2	2	0	2	2	0	1	0	11
<i>Penicillium restrictum</i>	0	0	1	0	2	0	2	0	1	0	2	0	0	0	0	0	3	0	0	1	0	0	0	0	7
<i>Trichoderma viride</i>	2	1	0	0	3	2	0	0	0	2	2	2	0	1	0	1	0	0	0	0	0	0	1	1	12
<i>Aspergillus niger</i>	2	2	1	0	0	0	1	1	1	2	3	2	1	2	1	2	0	0	2	3	0	0	1	2	17
<i>Cladophialophora</i> <i>carriionii</i>	2	2	0	0	2	0	0	1	1	0	0	0	0	0	0	2	2	2	0	0	3	0	0	2	1
<i>Fusarium Graminearum</i>	0	0	1	1	1	1	2	0	0	2	2	1	0	3	1	0	0	0	2	2	0	0	0	0	13
<i>Fusarium solani</i>	2	1	3	1	0	2	2	0	0	0	1	0	1	0	0	1	3	1	1	1	0	0	1	2	15
<i>Alternaria tenuis</i>	0	2	1	0	3	2	0	0	2	2	2	0	0	3	3	0	1	0	2	1	2	0	0	0	13
<i>Lichtheimia corymbifera</i>	2	1	1	0	0	1	0	0	0	0	0	0	2	0	3	0	0	0	1	1	0	1	0	9	
<i>Microsporum canis</i>	0	0	2	0	3	1	2	0	0	0	2	3	2	2	0	1	2	1	0	1	3	1	0	0	14
<i>Alternaria tenuis</i>	3	1	-	0	0	0	1	2	1	-	3	2	-	-	-	4	2	-	-	2	2	2	-	11	
<i>Lichtheimia corymbifera</i>	0	0	-	-	3	1	-	-	0	0	-	-	-	-	-	-	0	1	-	-	-	-	-	3	
<i>Microsporum ferrugineum</i>	2	1	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	3	3	3	3	3	9	

(N=3) means out of 3 samples 2 *Pseudomonas* sp were isolated; KRA-GCK LF (N=3) means out of 3 samples 0 no *Pseudomonas* sp were isolated. KRA-GCK RZ (N=3) means out of 3 samples 2 *Gluconbacter* sp were isolated; RZ-Rhizomes; LF-Leaf; Z/KF- Zongon Kataf; Jema-Jema'a; KRA-Kaura; KCH-Kachia; KGK-Kagarko.

Table 3: Occurrence of Nematodes in Six (6) Ginger Cultivated L.G.A in southern Kaduna, Kaduna State-Nigeria

Isolates (Nematode)	Number of Isolates																											
	7/KF-7Auri II (Soil)	7/KF-7Auri II (RZ)	7/KF-11/Rimi (RZ)	7/KF-11/Rimi (Soil)	IMMA-KASU II	IMMA-KASU II	IMMA-KASU II	JEMA- KASU SQ	JEMA- KASU SQ	KRA-KGR	KRA-KGR	KRA-KGR	KRA-GCK (RZ)	KRA-GCK (RZ)	KCH- Gibir (RZ)	KCH- Gibir (Soil)	KCH- U/Sarki (RZ)	KCH- U/Sarki	JABA-Jaban Kogo	JABA-Jaban Kogo	JABA-Sambam	JABA-Sambam	JARA-Samham	JARA-Samham	KGK-Kadariko	KGK-Kanarko II F1	KGK-Dogon Kummi	KGK-Dogon Kummi
<i>Meloidogyne</i> sp	0	2	1	0	3	0	1	2	0	0	0	0	0	0	0	2	1	0	3	0	0	1	0	0	2	0	13	
<i>Pratylenchus</i> sp	0	0	0	0	0	2	0	0	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6		
<i>Criconema</i> sp	0	1	-	-	0	3	0	0	0	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3		
<i>Rotylenchus</i> sp	1	0	-	-	2	0	0	0	3	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3		
<i>Scutellonema</i> sp	2	2	-	-	0	1	2	0	0	0	0	0	0	0	1	0	2	0	0	-	-	-	-	-	-	6		
<i>Trichodorus</i> sp	0	0	0	0	2	0	1	3	2	0	2	0	2	0	0	1	2	2	1	0	1	1	2	1	1	15		
<i>Tylenchorhynchus</i> sp	2	0	-	-	0	3	0	0	0	2	1	1	3	2	0	0	0	1	0	-	-	-	-	-	-	8		
<i>Hoplolaimus</i> sp	-	-	-	-	-	-	-	-	-	2	0	0	2	1	0	0	2	-	-	-	-	-	-	-	-	4		
<i>Helicotylenchus</i> sp	-	-	1	2	-	-	-	-	-	1	2	0	0	3	0	1	0	0	0	1	0	1	1	1	8			
<i>Aphelenchoides</i> spp	-	-	1	1	-	-	-	-	-	2	0	0	2	0	1	0	1	1	1	2	3	0	3	0	10			

Note: Z/KF-Zauru (N=3) out of the 3 samples 2 *Meloidogyne* sp were detected; out of the 3 samples from Z/KF-Zauru (N=3) 0 number of *Meloidogyne* sp were detected; RZ-Rhizomes: LF-Leaf; Z/KF- Zongon Kataf; Jema-Jema'a; KRA-Kaura; KCH-Kachia; KGK-Kagarko.

Figure 1: Distribution of disease incidences in the *Ginger Zingiber officinale* cultivation L.G.A

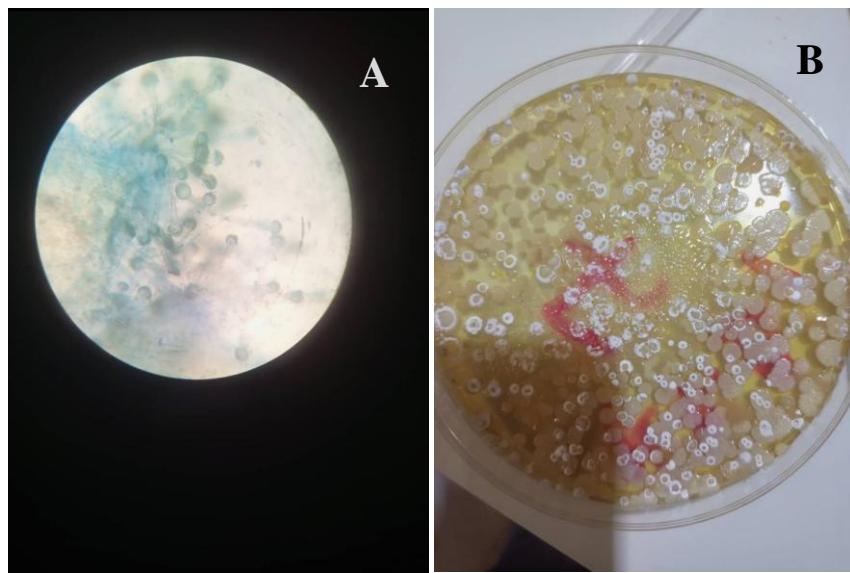


Figure 2: Microscopic view of fungi (A) & Bacteria growth culture media

DISCUSSION

Occurrence of Fungi in Six (6) Ginger Cultivated LGAs in Southern Kaduna, Kaduna State-Nigeria

In Table 1, *Aspergillus fumigatus* recorded the highest frequency of isolation (17 occurrences), followed closely by *Fusarium solani* (15), *Microsporum canis* (14), and *Alternaria tenuis* (13). The high frequency of *Aspergillus* spp. and *Fusarium* spp. is consistent with their known role as primary causal agents of rhizome rot in ginger fields and during storage (Anandaraj *et al.*, 2014). These fungi are opportunistic and thrive under warm and humid conditions typical of Southern Kaduna, suggesting that environmental factors play a critical role in disease establishment (Okigbo and Nmeka, 2005; Sharma *et al.*, 2019). The relatively lower frequencies of *Microsporum ferrugineum* (9) and *Lichtheimia corymbifera* (3) indicate that while these fungi are present, they may not represent major threats under current field conditions.

The distribution of fungal diseases in Figure 1 highlights the dominance of fungal pathogens, with incidences ranging from 9 to 19 per field, compared to bacteria (9 to 7) and nematodes (5 to 8). This reinforces the evidence from Table 1 that fungi are the primary agents of ginger decline in the region. Particularly noteworthy is the high fungal incidence in Kachia (19 in Gibir) and Zangon Kataf (18 in Zauru), suggesting these LGAs may serve as hotspots for pathogen buildup.

The bacterial presence, although secondary to fungi, was significant in Jema'a (17 in KASU SQ), indicating that bacterial wilt could also represent a notable threat in some locations. The predominance of fungal species over bacteria and nematodes across locations aligns with earlier reports that fungi constitute the major constraint to ginger cultivation and storage in tropical regions (Okigbo and Nmeka, 2005; Sharma *et al.*, 2019).

The co-occurrence of fungi, bacteria, and nematodes in the same locations underscores the multifactorial nature of ginger decline (Bhuyan *et al.*, 2010), where synergistic interactions between pathogens exacerbate disease severity (Nirmal Babu *et al.*, 2015). For instance, nematode damage may predispose rhizomes to

colonization by *Fusarium* spp., while bacterial infections could weaken host resistance, thereby facilitating fungal invasion. This interaction could explain the high cumulative disease incidences recorded in some locations such as Jema'a and Kachia.

The variations across LGAs may also reflect differences in soil type, cultural practices, and microclimatic conditions. For example, areas with heavier soils and poor drainage may favor fungal pathogens such as *Rhizopus* and *Mucor*, which thrive in anaerobic conditions. Meanwhile, the higher bacterial incidence in Jema'a could be linked to irrigation practices or soil moisture levels that favor bacterial wilt pathogens.

Occurrence of Bacteria in Six (6) Ginger Cultivated LGAs in Southern Kaduna, Kaduna State- Nigeria

Early wilting, chlorosis (yellowish) and rotten rhizomes were observed on some collected samples. Bacteria and fungi also are known to affect leaves of most crops. Akos *et al.* (2019abc); Akos *et al.* (2021); Akos. (2023) also confirm this with their work on the pathogens. Bacteria has been found to exhibit these symptoms in ginger, wilting (yellowish leaves) and rotten of the rhizomes. Kumar and Sarma (2005) agrees that ginger exhibit such symptoms. From the several bacteria isolated from culture of the leaves and rhizomes. The bacteria so isolated are found to contain some pathogenic types such as *Pseudomonas* species which was found to cause wilting and soft rot in ginger. *Bacillus* species is known to be both beneficial and harmful to ginger. *B. pumilus* is pathogenic and causes rhizome rot. Sharma *et al.* (2021); Meenu and Jebasingh (2019) also confirms categorization of ginger into pathogenic and non-pathogenic. However, *B. subtilis* and *B. safensis* enhances ginger growth and yield as plant growth-promoting rhizobacteria (PGPR) (Jabborova *et al.*, 2021; Singh and Shyu, 2024).

The PGPR act in inducing plant resistance, enhancing nutrient uptake, and producing antifungal compounds (Aramesh and Ajoudanifar 2017). *Citrobacter* species is also known to cause

ginger rot, a disease characterized by wilting, chlorosis (yellowing) of leaves, and soft, brown rot and maceration of the rhizome (ginger root) with a foul smell. This bacterial pathogen was first reported in China, infecting ginger plants, and can lead to significant decay and loss of the ginger crop (Zhao *et al.*, 2021). The isolation of the disease in Nigeria ginger corroborate with Chikh-Ali *et al.*, (2019) that it has a worldwide distribution. Non pathogenic bacteria of *Gluconobacter* species (*non-infectious to ginger*, rather, the ginger's inherent antimicrobial properties affect bacteria including *Gluconobacter* if present), *Proteus* species, ginger compounds such as 6-shogaol, can stop the growth and multiplication of bacteria, including *Proteus* species, especially *P. mirabilis*. Huh *et al.* (2023) reported that ginger additional, suppressed *P. mirabilis*-induced intestinal barrier disruption. This could be that the impact of the other pathogenic organisms might have weakened its ability to create a resistance. *Enterococcus* species, *Flavobacterium* species, the mere presence of these bacteria does not necessarily suggest that it must be pathogenic. Report shows that gingers antimicrobial properties inhibit the growth of some bacteria (Dharmapala and Amarokoon, 2024). *Micrococcus* species exist in human skin and soil. *Acetobacter* and *Similium* species. *A. aceti*, cause rotting in fruits like pears, apples and citrus (Amadi-Ikpa *et al.*, 2025) while genera *Similium* that causes Onchocercasis (river blindness) in humans and was also found in Ginger. (WHO 2025)

Occurrence of Nematodes in Six (6) Ginger Cultivated LGAs in Southern Kaduna, Kaduna State-Nigeria

In Table 3, a total of 10 plant-parasitic nematodes were identified across the different ginger cultivation LGAs in the study area. The overall total indicates a high occurrence of *Trichodorus* sp (stubby-root nematode), followed by *Meloidogyne* sp (root-knot nematode), and notable occurrences of other nematodes such as *Pratylenchus* sp, *Criconema* sp, *Rotylenchus* sp, *Scutellonema* sp, *Tylenchorhynchus* sp, *Hoplolaimus* sp, *Helicotylenchus* sp and *Aphelenchoides* spp. This agrees with Bulus *et al.* (2020), who reported that a total of 19 plant-parasitic nematodes were identified to be associated with ginger in Kaduna state.

Trichodorus sp recorded the highest occurrences with 15 isolates, especially noted in KRA-GCK (RZ) and KRA-KGR Pada (Soil) with 3 isolates each, highlighting its significance in the nematode complex affecting ginger in 9 locations in the region. This is in agreement with Bulus *et al* (2020), who reported that a total of 19 plant-parasitic nematodes including *Trichodorus* sp were identified to be associated with ginger in Kaduna state.

Meloidogyne sp was the second most common with 13 isolates and predominantly found in certain areas such as Jema'a-KASU JQ (RZ) and KRA-GCK (Soil) with 3 occurrences each, indicating its widespread impact on ginger cultivation. This corroborates with Adegbidi *et al.* (2022) who reported that *Meloidogyne* sp was prevalent in Kaduna State, affecting ginger roots and leading to significant reductions in yield. *Aphelenchoides* and other nematode species had fewer total occurrences compared to *Meloidogyne* and *Trichodorus*, indicating a lesser but still notable presence.

These discoveries underscore the importance of nematode management in ginger cultivation, as nematodes such as *Meloidogyne* sp and *Trichodorus* sp were frequently found in both rhizomes and Soils, indicating systemic infection and are

recognized for their detrimental effects on root systems, leading to stunted growth and reduced yields.

Nematode infections were consistently lower but non-negligible, as nematodes are known to predispose plants to fungal invasion by creating entry points in root tissues (Bridge and Starr, 2007; Elisha and Adeniyi, 2023). It also agrees with the report of the Kaduna State Ministry of Agriculture (2023) which showed a complex interplay between nematodes and fungal pathogens leading to a devastating disease complex in ginger.

Conclusion

The total fungal count (171) is significantly higher than for bacteria (135) and nematodes (71). Bacteria were found in all 12 locations. Fungi are the dominant pathogens isolated in every single location sampled, which suggests fungal diseases as the most likely widespread pathogen and the primary cause of ginger losses in the region.

Bacterial occurrences were also found to be a significant and widespread in every location, indicating it is a common problem of ginger in these areas. The numbers are consistently high, often second only to fungi. Locations like Jema'a (KASU SQ) and Sambam (Jaba) showed bacterial counts equal to or nearly equal to fungal counts. Bacterial infections are a major co-factor in ginger disease complexes and signify a serious menace to ginger production and survival.

Nematodes were found in all 12 locations, confirming they are a widespread soil-borne issue for ginger farmers. However, the number of nematode occurrences per location is generally lower than for fungi and bacteria. Nematodes are a constant, core stress factor across all ginger cultivation areas in the study zone. Overall, the results provide strong evidence that ginger cultivation in Southern Kaduna is under serious threat from a complex of pathogens, with fungi as the dominant group. This has significant implications for ginger production in Nigeria, given that Kaduna State is the leading producer of ginger in the country. This also provides a vital awareness into the complex interactions between multiple pathogens affecting ginger in Kaduna State. The findings call for integrated disease management strategies combining cultural, chemical, and biological control approaches. Emphasis should be placed on crop rotation, the use of resistant cultivars, biological antagonists (Harman *et al.*, 2004), and careful post-harvest handling to minimize fungal contamination (Naidu and Naik., 2017; Adeniji and Nwankwo, 2018).

Acknowledgment: TETFund, Institutional Based Research Grant (IBR Grant), 2024 & Kaduna State University, Kaduna – Nigeria.

Conflict of Interest: None

REFERENCES

- Adegbidi, A.A., Oshi, E.E., and Zangina, O. (2022). "Nematode Species Populations in Ginger Fields of Kaduna State, Nigeria." *Nigerian Journal of Agricultural Science*, 15(1), 12-19.
- Adeniji, M. O., Oladipo, O. G. and Nwankwo, I. I. (2018). Survey of fungal diseases of ginger (*Zingiber officinale* Roscoe) in selected local government areas of Kaduna State, Nigeria. *Nigerian Journal of Plant Protection*, 32(1), 45-54.

Agu, K.C., Nweke, G.U., Awah, N.S., Keke, B.C., Mgbemena, I.C.C., Okigbo, R.N. and Ngenegboo, U.C. (2015). Fungi associated with the post-harvest loss of sweet potato. *International Journal of Research Studies in Biosciences*, 3(9): 32-37.

Akos IS, Rafii MY, Ismail MR, Ramlee SI, Shamsudin NAA, Ramli AB, Haliru BS, Ismai'la M, Chukwu SC., 2019a. A review on gene pyramiding of agronomic, biotic and abiotic traits in rice variety development. *International Journal of Applied Biology*, 3(2):65-96

Akos IS, Rafii MY, Ismail MR, Ramlee SI, Shamsudin NAA, Ramli AB, Jalloh M, Jamilu H, Swaray S., 2019b. Genetic inheritance of multiple traits of blast, bacteria leaf blight resistant and drought tolerant rice lines. *International Journal of Applied Biology*, 3(2):1-35

Akos IS, Rafii MY, Ismail MR, Ramlee SI, Shamsudin NAA, Ramli AB, Chukwu SC, Swaray S, Jalloh M., 2021. Evaluation of inherited resistance genes of bacterial leaf blight, blast and drought tolerance qDTY in improved rice lines, *Rice Science*, 28(3):279-288 doi:10.1016/j.rsci.2020.08.001

Akos IS, Rafii MY, Ismail MR, Ramlee SI, Shamsudin NAA, Ramli AB, Chukwu SC., 2019c. Genotyping and phenotyping for rice selection resistant to blast, bacteria leaf blight and drought tolerant. Exploring Innovation in genetics, Proceeding of the 13th Malaysia International Genetic Congress 19th -21st, Nov. 2019.

Akos IS., 2023. Marker-assisted pedigree selection of introgressed F₂ blast, bacteria leaf blight and drought in rice segregating lines. *KASU Journal of Biochemistry and Biotechnology*, 6(1): 1-11

Amadi-Ikpa, C.N., Dimkpa, F.B., & Sunday, G.L (2025). Comparative Analysis of Acetobacter aceti Prevalence in Ripe Fruits Sold at Ozuoba Market, Port Harcourt, Rivers State. *Faculty of Natural and Applied Sciences Journal of Scientific Innovations*. 6 (3): 81-87. DOI: <https://doi.org/10.63561/fnas-jsi.v6i3.954>

Aramesh, M. and H. Ajoudanifar (2017). Alkaline protease producing *Bacillus* isolation and identification from Iran. *Banats. J Biotechnol*, VIII (16) pp. 140-147, 10.7904/2068-4738-VIII(16)-140

Akhter, M.S., Akanda, A.M., Kobayashi, K., Jain, R.K. and Mandal, B. (2019). Plant Virus Diseases and their Management in Bangladesh. *Crop Protection*, 118: 57-65, ISSN 0261-2194.

Akhter, M.S., Nakahara, K.S. and Masuta, C. (2021). Resistance Induction based on the Understanding of Molecular Interactions between Plant Viruses and Host Plants. *Virol J* 18: 176 <https://doi.org/10.1186/s12985-021-01647-4>.

Aregawi, L., Csiki, Z., Shokralahi, M. and Teame, H. (2022). Ginger Constituents and its Effects on Gastrointestinal malignancies: A Review of Clinical trials. *European Journal of Public Health*, Volume 32, Issue Supplement. <http://DOI.org/10.1093/eurpub/ckac131.235>

Bernard, A. (2008). Diseases, Pest and other factors limiting Ginger (*Zingiber officinale* Rosc) Production in River State. Agricultural Product Development Strategy Workshop. Uptonville Foundation under the Aegis of Rivers State Sustainable Development Agency (RSSDA). <http://uptonvilleoginstu.org/ginger.htm>. Retrieved on 11th April 2022.

Barnett, H. L. and Hunter, B. B. (1998). *Illustrated genera of imperfect fungi*. APS Press, 4th edition. St. Paul, Minnesota.

Bhuyan, M. H. M. B., Hossain, M. M., and Rahman, M. M. (2010). Occurrence of rhizome rot disease of ginger and its management in Bangladesh. *International Journal of Sustainable Crop Production*, 5(3), 1-9.

Bridge, J. and Starr, J. L. (2007). *Plant nematodes of agricultural importance: a color handbook*. Elsevier.

Bodhare, A. (2023). Ginger (Adrak): Uses, Benefits, Side Effects and More! <https://pharめeasy.in/blog/ayurveda-uses-benefits-side-effects-of-ginger/> Retrieved on 11th October 2023.

Bulus, J., Abraham, P., Joshua, M., Shamaki, D. E., Okolo, C. T. and Chindo, P. S. (2020). Distribution and Population Densities of Plant-Parasitic Nematodes Associated with Ginger (*Zingiber officinale*) in Kaduna State, Nigeria. *FUDMA Journal of Science*, 4(3), 496 - 504. <https://doi.org/10.33003/fjs-2020-0403-396>

Chikh-Ali, M., Natsuaki, T., and Karasev, A. V. (2019). Molecular Diversity of Main Cucurbit viruses in Syria. *Journal of Plant Pathology*, 101(4), 1067-1075.

Coyne D.L., J.M. Nicol., B. Cladius-Cole (2007). *Practical Plant Nematology: A field and Laboratory Guide*. SP-IPM Secretariat International Institute of Tropical Agriculture (IITA), Cotonou, Benin

Dharmapala K.P. and R. Amarakoon (2024). An Evaluation of Antimicrobial Activity of Common *Zingiber officinale* Cultivars Grown in Sri Lanka. *European Journal of Agriculture and Food Sciences*. 6 (3) DOI icon 10.24018/ejfood.2024.6.3.804

Dohroo, N. (2016). Diseases of Ginger. In: *Ginger*. Boca Raton, USA: CRC Press; 2016. pp. 325-360.

Dohroo, N.P. (2001). Etiology and management of storage rot of ginger in Himachal Pradesh. *Indian Phytopathology*. 54:49-54

Doncaster, C.C. (1962). A counting dish for nematodes. *Nematologia*, 7: 334-336.

Duniya, I. B. (2003). An Assessment of the Marketing Perspectives, in the Development and Implementation, of Kaduna State-owned Agro-allied Projects: A Case Study of Kachia food company limited. MSc Thesis, Department of Business Administration, Ahmadu Bello University Zaria, Nigeria. 98 p.

Erinle, I. D. (1988). Horticultural Crops Research Programme, IAR, ABU Zaria. Proceedings of the First National Ginger Workshop at Umudike, Nigeria p. 8-15.

Elisha, S., and Adeniyi, F. (2023). Interactions between root-knot nematodes and bacterial pathogens in ginger: Implications for integrated management. *Nematology Research*, 18(1), 15-25.

Farroukh Z.A., Borjac, J. El Badan, D (2025). A dumpsite-isolated *Bacillus safensis* Z1 with protease yield for potential industrial use. *Journal of Genetic Engineering and Biotechnology* 23(3): <https://doi.org/10.1016/j.jgeb.2025.100543>

FAOSTAT (2021). Crops and Livestock Products. <https://www.fao.org/faostat/en/#data/QCL/visualize>. Retrieved on 26th October, 2023.

Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., and Lorito, M. (2004). *Trichoderma* species—opportunistic, avirulent plant symbionts. *Nature Reviews Microbiology*, 2(1), 43–56.

Huh, E., Choi, J.G., Choi, Y., Ju, I.G., Noh, D., Shin, D., Kim, D.H., Park H and S.O., Myung (2023).6-Shogaol, an Active Ingredient of Ginger, Improves Intestinal and Brain Abnormalities in *Proteus Mirabilis*-Induced Parkinson's Disease Mouse Model. *Biomolecules and Therapeutics* 31(4). DOI:10.4062/biomother.2023.098

Ioannou, P. and G. Vougiouklakis (2020). Infective endocarditis by *Proteus* species: a systematic review. *Germs*, 10 (3): 229-239

IUCN (International Union for Conservation of Nature) (2022). Ginger *Zingiber officinale*. <https://www.kew.org/plants/ginger>. Retrieved on 21st October 2023.

Jamir, C. (2022). Economic Analysis of Organic Ginger Farming in Longleng District: A Case Study Pongo, Yongnyah, Yongam and Bhumnyu Village. Agripreneur: Jurnal Pertanian Agribisnis, 11(1), 01-11. Retrieved from <https://iocscience.org/ejournal/index.php/Agripreneur/article/view/2318>

Jabborova, D., Enakiev, Y., Sulaymanov, K., Kadirova, D., Ali A. & K. Annapurna (2021). Plant growth promoting bacteria *Bacillus subtilis* promote growth and physiological parameters of *Zingiber officinale* Roscoe. *Plant Science Today*, 8(1): 66–71 <https://doi.org/10.14719/pst.2021.8.1.997> ISSN 2348-1900 (online)

Kumar A. and Sarma, Y.R. (2005). Characterization of *Ralstonia solanacearum* causing bacterial wilt of ginger in India. *Indian Phytopathology*. 57:12-17

Mathur, S. B. and Kongsdal, O. (2003). Common laboratory seed health testing methods for detecting fungi. Published by International Seed Testing Association (ISTA). Bassersdorf, CH., Switzerland. Pp. 89

Meenu, G. and Jebasingh, T. (2019). Diseases of ginger. In *Ginger Cultivation and Its Antimicrobial and Pharmacological Potentials*. DOI: 10.5772/intechopen.88839 Kaduna State Ministry of Agriculture (MoA). (2023). Internal Reports on Ginger Production and Disease Outbreak (2022-2023). (Referred to in FAO 2023 and media; primary source on local impact).

Nair, K. P. P. (2013). The Agronomy and Economy of Turmeric and Ginger: The Invaluable Medicinal Spice Crops. Elsevier Inc., Vewnes USA, 544 p

Naidu, R., and Naik, M. K. (2017). Rhizome rot of ginger and its management. *Journal of Plant Disease Sciences*, 12(1), 1–8.

Nirmal Babu, K., Divakaran, M., Raj, R.P., Anupama, K., Peter, K.V. and Sarma, Y.R. (2015). Biotechnological Approaches in Improvement of Spices: A Review. In: Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K. (eds) *Plant Biology and Biotechnology*. Springer, New Delhi.

Nmadu, J. N. and Marcus, P. L., (2013). Efficiency of ginger production in selected local government areas of Kaduna State, Nigeria. *International Journal of Food and Agricultural Economics*, 1 (2), 39–52

Odifa, D. (2022). Nigeria's ginger exports grow seven-fold on rising interest. <https://www.google.com/amp/s/businessday.ng/agriculture/article/nigerias-ginger-exports-grow-seven-fold-on-rising-interest/%3famp=1> (Retrieved 25th September, 2023).

Okigbo, R. N., and Nmeka, I. A. (2005). Control of yam tuber rot with leaf extracts of *Xylopia aethiopica* and *Zingiber officinale*. *African Journal of Biotechnology*, 4(8), 804–807.

Omotayo, A.O., Madaki, M.J., Sanusi, S.O. and Shaba, M.G. (2021). Factors Influencing Export Performance of Ginger (*Zingiber officinale*) in Nigeria. *Russian Journal of Agricultural and Socio-Economic Sciences*. 110(2):93-102 DOI: 10.18551/rjas.2021-02.11

Ravindran, P. and Nirmal, B.K. (2016). *Ginger: The Genus Zingiber*. Boca Raton: CRC Press. p. 7. ISBN 9781420023367.

Sharma, K. K., Sachan, H. K. and Krishna, D. (2021). Ginger Production Constraints and Future Perspectives in Fiji. *Reviews in Agricultural Science*, 9:260 – 270. https://dx.doi.org/10.7831/ras.9.0_260.

Sharma, R., and Dohroo, N. P. (2019). Diseases of ginger and their management. In Gupta, S. K. (Ed.), *Diseases of Horticultural Crops* (pp. 249–265). Apple Academic Press.

Sodangi, I.A. (2020). Evaluation of the Performance of Ginger (*Zingiber officinale* Rosc.) Germplasm in Kaduna State, Nigeria. *Science World Journal* 15(3) www.scienceworldjournal.org. ISSN 1597-6343

Singh, S., D.J.H. Shyu (2024). Perspective on utilization of *Bacillus* species as plant probiotics for different crops in adverse conditions. *AIMS Microbiol.* 13;10(1):220–238. doi: 10.3934/microbiol.2024011

Uddin, J., Ahmed, H., Asiri, Y.I., Kamal, G.M. and Musharraf, S.G. (2023). *Ginger Essential Oil: Chemical Composition, Extraction, Characterization, Pharmacological Activities, and Applications*. Academic Press, P345-376, ISBN 9780323917407, <https://doi.org/10.1016/B978-0-323-91740-7.00014-1>.

Wang, H. (2020). Introductory Chapter: Studies on Ginger. IntechOpen. doi: 10.5772/intechopen.89796

WHO (2025). <https://www.who.int/news-room/fact-sheets/detail/onchocerciasis>. Retreved 29 January 2025

Yang, J.J. and Rahmawati. (2022). Antimicrobial Effects of Various Red Ginger Extract Concentrations on *Escherichia coli* bacteria. *European Journal of Biotechnology and science*. www.biosciencejournals.com. ISSN: 2321-9122. 10(2): 63-67.