Science World Journal Vol. 20(No 4) 2025
www.scienceworldjournal.org

ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)
Published by Faculty of Science, Kaduna State University

BAYESIAN CONTROL CHARTS FOR REAL-TIME MONITORING OF
DEFECT RATES IN AUTOMATED PRODUCTION LINES USING
BINOMIAL AND POISSON MODELS

https://dx.doi.org/10.4314/swj.v20i4.43

“ldowu A.O., 2Sokenu M.R. & 3Adesanya C.O.

"Department of Mathematics and Statistics, Federal Polytechnic llaro, Ogun State, Nigeria
2Department of Statistics, Federal College of Education, Yaba, Lagos State, Nigeria
3Department of Statistics, Yaba College of Technology, Yaba, Lagos State, Nigeria

*Corresponding Author Email Address:_adam.idowu@federalpolyilaro.edu.ng

ABSTRACT

The increasing demand for high-quality automated manufacturing
systems necessitates real-time and reliable monitoring solutions to
solve production issues. Traditional control charts, such as
Shewhart, Exponentially Weighted Moving Average (EWMA), and
Cumulative Sum Control Chart (CUSUM), rely on set detection
limits and struggle to handle tiny shifts across different sample
sizes. This study creates and assesses Bayesian control charts
based on the Binomial and Poisson models for real-time defect rate
monitoring in automated production lines. The Bayesian Binomial
chart monitors defect proportions in batch processes, while the
Bayesian Poisson chart tracks defect numbers over time. The
suggested approach reduces the in-control average run length
(ARLo) by 47% compared to Shewhart and 25% compared to
EWMA, based on simulation of 2,000 replications with a sample
size of 200. Small shifts (0.250 - 0.500) resulting in a 45%
reduction in out-of-control ARL,, showing increased sensitivity.
The model has lower Type | (0.038) and Type Il (0.055) error rates,
a p-value of 2.2x107"¢, and a Bayes factor (Bfy,) of 18.6. These
studies show that Bayesian Binomial and Poisson charts improve
fault detection, reduce false alarms, and increase decision-making
efficiency in automated manufacturing systems.

Keywords: Automotive Manufacturing, Bayesian Control Chart,
Binomial Distribution, Poisson Distribution, Quality monitoring.

INTRODUCTION

In the era of Industry 4.0, automated manufacturing systems
require real-time and adaptive quality monitoring tools. Meanwhile,
the traditional process control tools like Shewart, EWMA, and
CUSUM charts show a poor performance with defect data that
follow Poisson and Binomial distributions. The Binomial distribution
is effective for monitoring defects proportional in a fixed data set,
while the Poisson distribution models the count of defects over time
and space. The involvements of real-world automated data are
often dispersed, dynamic, and has zero inflation, which uses
classical methods that handle the data effectively. Due to a lack of
effectiveness, the Bayesian control chart examines the challenges
by adopting prior knowledge, modeling the uncertainty, and
dynamically updating the process parameter, which enables a real-
time adaptation of the control limit. Due to all these outliers, this
study aims at developing and evaluating the model using a
Bayesian control chart limit based on two distributions to improve
its adaptability, accuracy, and predictive capability by monitoring
the rate of defects in data-driven and quality management on
automobile manufacturing industries. Ryan (2010) evaluated a

Bayesian control chart for Poisson count data using varying time
sample sizes, compared to a multiple approach. Their study
reveals the practical importance of monitoring high-quality
production due to the change in inspection time or batch sizes.
(Zhou et al., 2012) developed a likelihood-based EWMA Weighted
Exponentially Weighted Moving Average (WEWMA) control chart
for Poisson count using varying time series sample sizes. The
findings show that WEWMA gives a better ARL performance than
competing with the EWMA/CUSUM procedure for sample sizes.
Sellers (2012) postulate a generalized statistical control chart that
monitors over time or under-dispersion data count, which goes
beyond the assumption of the Poisson distribution. The study found
that the model demonstrates simulation via a classical Poisson
chart, which is biased under ARL properties. (Shen et al., 2013)
examine the monitoring of Poisson counts with a probability control
chart for the sample size variable, thereby proposing a method that
avoids the assumption of prior knowledge of sample size. Their
methods standardize and derive control chart limits whose
properties are evaluated through Markov chain or average run
length computation that exhibits in-control characteristics under a
realistic variable in sample. (Assareh et al., 2013) evaluate the
model on the method of estimation using a change point based on
a Poisson control chart, which includes linear trends and multiple
points of change in the rate of Poisson distribution. They also
include the hierarchical model with classical c-chart, MCMC,
EWMA, and CUSUM type of poison chart. Their study
demonstrated that the simulation of Bayesian methods can give a
credible interval for both magnitude and the time change, most
especially for medium and small shifts. Saghir & Lin (2014)
introduced the CUSUM chart for the Conway Maxwell-Poisson
distribution, which generalized dispersion via an extra parameter
disparity. Their study indicates a substantial detection improvement
in dispersion relative to the standard Poisson CUSUM. Albers &
Kallenberg (2020) evaluated a Bayesian c-chart using a conjugate
Gamma prior to monitor the defect rates in the assembly of the
automotive industry. The method outperforms the traditional control
chart in the detection of small shifts. (llies et al., 2020) evaluated
the use of statistical control charts for monitoring surgical site
infection and found that they significantly improve the early
identification of clinically relevant increases in infection rates. Their
findings show that the adoption of SPC methods is important in
high-stakes environments that explore rare event time data.
(Asalam et al., 2020) designed a Bayesian EWMA chart that
provides an effective method for detecting moderate and small
process shifts. The monitoring of defect rate in the automated lines
of production is essential for the maintenance of high-quality
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standards and for minimizing costly disruption. Control chart, such
as p and c-charts, often strives for a low defect rate due to their
relevance to control limits and static assumptions (Jones et al.,
2021). (Mahmood et al., 2021) developed a GLM-based control
chart for Poisson, and they were able to propose a double
regressive mean and standard residual progressive mean
schemes that use Poisson regression on the residual model in
building charting statistics. Their study indicates that the simulation
and case study show that Sequential Rank-Based Distribution Free
Process Monitoring (SRDPM) performs better than Sign Rank
Exponentially Weighted Moving Average (SR-EWMA) for detecting
the increase in shifts in the mean value of Poisson when there is
existence of covariates. Alam & Khan (2022) developed a Bayesian
control chart using a Poisson distribution with a gamma prior for
monitoring the defect count over time. Their study reveals a high
performance on low defect and small sample hierarchical structure,
which has good robustness and average run length in variation of
parameters.

Recent technological advancements have adopted Markov Chain
Monte Carlo (MCMC) methods for hierarchical models and non-
conjugate priors, which enhances robustness in production for
complex scenarios Lee & Lee (2022). Bourazas (2022) postulated
a predictive control chart on a Bayesian framework for monitoring
of online defective automotive data. The study demonstrates a
practical design that is directly relevant to binomial or poison
monitoring of industrial datasets. Ottenstreuer (2022) monitors the
time count series modeled by the Integer-valued Autoregressive
Conditional Heteroskedasticity (INARCH) Poisson model. Their
study reveals that SR gives a better detection for a certain shift in
a small dependent count process. A study conducted by Garcia &
Zambrano (2022) constructed control charts on health surveillance
through the use of negative-binomial regression residuals in the
detection of count data. A study conducted by (Khan et al., 2023)
applied a Bayesian EWMA chart with a set of rank sampling
schemes and a loss function used in detecting a small shift
effectively in the semiconductor process, with an average run
length and completion of sensitive performance approaches on
sample size Bayesian AEWMA, control chart. The application of
semiconductor and industrial automotive shows a significant
decrease in false alarm rate, compared to the Shewart chart (Wang
et al., 2023). Thus, (Ahmad ef al., 2023) introduce a Hybridge
Bayesian EWMA memory-type control chart that integrates prior
information and also uses a set-ranked sampling scheme, which
improves sensitivity in small and moderate shifts. This study
reveals how the model and sampling adjustments scheme gainfully
improved the performance of the control chart. (Boaventura et al.,
2023) proposed a bell distribution-based process control chart to
accommodate over-dispersed counts. The model findings
demonstrate an in control in average run length compared to
Poisson classical and negative binomial charts. Sabahno & Amiri
(2023) developed a machine learning control chart enhancement
for a generalized linear model, which includes hybrid and adaptive
static performance due to nonlinearity and covariate influences.
(Cheema et al., 2023) extend the idea by proposing a deviance and
residual Pearson-based chart to generalize the model counts,
which reports a better robustness compared to the Poisson
classical chart. (Rakitzis ef al., 2024) developed a Shewhart-type
control chart for zero-inflated Binomial and Poisson processes,
especially when the parameter estimates are known. The findings
show that the Bayesian control chart for type two models
emphasizes efficiency in computational real-world challenges

implementations. (Supharakonsakun et al., 2024) proposed a
Bayesian extension of c-chart by using a gamma prior on Poisson
rate. The study reveals that the large value of lambda is carefully
distributed on the hyperparameter, which is necessary for
monitoring its performance. Majidizadeh (2024) evaluates the
Poisson process model with multiple change points used to
analyze the infection curve in epidemiology. The result shows that
the model methodology can be adopted in SPC for detecting a
change in defective rate. (Waqgas et al., 2024) evaluate a
bibliometric analysis and a systematic control chart, which is
applied in the healthcare sector. The result improves the sensitivity
and robustness of health care monitoring. Thus, Javed & Abbas
(2024) developed a Bayesian EWMA control chart for the detection
of changes in the parameter of an Inverse Gaussian process. The
findings demonstrate an improvement in the control process with
skewed data distribution. (Corneck et al., 2025) use the model on
online streaming and the detection of a change point in a Poisson
network process with hidden communities. Recently, (Menssen et
al., 2025) applied Bayesian-based prediction intervals on Poisson
data in medical quality control. The study shows a high variability
in the practical environments of the defective data.

Thus, the present study focuses on developing and applying a
Bayesian Control chart, based on the Binomial and Poisson
models, for monitoring real-time defect rate in an automated
production line that enhances adaptive quality control under
Industry 4.0 settings. The aim of the current investigation is to
design and implement the model control chart using the two
distributions for real-time monitoring rates of defects in an
automated line of production, thereby improving the early detection
of process shifts and enhancing adaptive quality management.
This study is useful in various automated industries that deal with
the production of goods and services by the introduction of a
Bayesian control chart for monitoring defect rates in automated
lines of production, offering an adaptive and reliable alternative to
traditional Shewhart or CUSUM charts. The study also supports
real-time decision-making by updating control limits, thereby
improving defect reduction, quality, and alignment with industry.
The descriptive set of equations is numerically solved, and the
results are presented

graphically and in tabular form with appropriate discussions for
practical applications.

MATERIAL AND METHODS

Study Design

This study examines an observational design on automated lines
of production where batch-level quality data were obtained
continuously over a certain period. Each batch stands as the
observation units’ total inspection time (n) and the number of
defects (y) with the batch Identity and process condition. The
design also enables the monitoring of natural variation in the defect
rate and the detection of a timely shift using a Bayesian control
chart based on the two distributions.

Data Collection.

The data used for this research was secondary data collected from
automatic inspection sensors and the manufacturing execution
system, which ensures accuracy and also minimizes human bias.
In each batch, batch size, defect counts, and information such as
machine identity, operator, temperature, and production shift are
logged. Evaluation of performance detection is obtained from the
records of the lines during the process of production.
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Given the likelihood of the model of the data
X¢|p~Binomial(n, p)
(1

then the conjugate prior of beta
p~Beta(a, )
(2)
the Probability Mass Function of the beta conjugate prior
n(p) o« p®~ (1 —p)F?

While the posterior parameter after D;.._1
a1 =a+ Zf;i Xi

Be-1 =B+ XiZi(n; — X))

Given the posterior distribution
p|Dy.t—1~Betala;_q, fr—1) 6
6
Using the posterior predictive beta binomial, the probability mass
function of the beta binomial is given by
X Pr(BXt = k|?1:t—1) =
n\ Blai—1+k,fr—1+n—k _
(kt)m,k =0,.n, (7)
Where (B) is the beta function.
By applying the limit, the predictive mean and variance of the model
are given by
_ _ Xe—1
E[X|Dy.t—1] = neE[p|D1:e-1] = ny e tBin
(8)
Var(X¢|D1:¢-1) = neE[p(1 = p)|.] + ne(ne_)Var(pl.)
9

Also, using the alarm rule signal at

t & Pr(X; = x|D14-1) <Y (10)
Control limit (smallest integer exceeding the predictive quantile)
Ct =

min {ke{O, o, Mk Z?;k Pr(Xe=j|D1.-1) < y}
(1)
Data model Poisson with exposure
X;|A~Poisson(de;)
(12)
Conjugate prior (gamma shape rate)
A~Gamma(a, b)
(13)
m(d) o« 19 1e b2
(14)
Posterior parameter after D;.;_1
a1 =a+ Y2 X;
(15)
bt—l =b+ Zf;% e;
(16)
Posterior distribution
A|Dy.p1~Gamma(a;_q, be—1)
(17)
Posterior predictive probability mass function (Poisson Gamma
mixture: NB form)

0 (g k
Pr(X; = k|D14-1) = fo %n(lle_ﬂdl
(18)
_ T(ar—1+k) et ko by (1
T kiT(ap_q) (bt_1+e,) (bt_1+e,)

(19)

Predictive mean and variance
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E[X;|D1.t-1] = eE[A|Dyt—4] = et%
(20)
Alarm rule (upper rule)
signal at
t & Pr(X; = x¢|D1.e-1) <Y
(21)
Control limit (smallest integer exceeding the predictive quantile)
Ce =
min {ke{O, v, N} Z;L;k Pr(Xt=]-|D1:t_1) < }/}

(22)
Alarm rule and control limit (same structure as binomial), Signal at

t © Pr(X; = x;|D1e1) < ¥

(23)
Ce = min{k = 0: 3724 Pr(Xe=j|D1e-1) < 7}
(24)
Poisson GLM (LOG link)
X¢|B~Poisson(u;)
(25)
He = etexp(ZtTﬁ)
(26)

Where Z, is the covariate vector using the Bayesian posterior for
the regression coefficient
Xig—n
n(BID) o n(B) Ty "5
(27)
Posterior predictive for future count (integral form)

kolt+1(B)
Pr(Xe_, = kD) = [ LB 2 (g D)dp

(28)

Given the Standard residual for the residual chart
r o= Xe—He
£ VR

(29)

And the deviance residual is given by

dy = sign(X; — ﬁt)\/z <Xt109% - X - ﬁt))

(30)
Monitor {r,} or {d,} with EWMA/CUSUM or predictive threshold.
The probability mass function mean while it dispersion parameter r
is given by

Pr(Xe = klpe 1) = S0 () (e

(31)
Bayesian treatment: place priors on § (GLM mean) and on r;
posterior predictive computed via sampling/MCMC or Laplace/VB.
The Bayesian EWMA on a parameter 6 such as 4, or p
0; = E[0|Dy;t—4]

(32)
Ss=wh+(1—w)Seey,  So=16y
(33)
|Se — 80| > Ly/Var(Sy)
(34)

Where variance (S;)is computed from the posterior of the
variance.
Given the Bayesian for predictive likelihood ratio form
= Jfooc(Xe[Da.e-1)
C¢ = max (0' Ce-1 + log fie(Xt|D1:e-1) )

35)
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target out-of-control models.
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ARL =~ YL, Ry

For model comparison and decision criteria, it is given by . sar) (37)
BE.. = [LODm ()0 SE(ARL) = W]
10 fL(9|D)ﬂ0(9)d9 (38)
(36)
The Monte Carlo estimate of average run length, simulate M
independent runs.
Let R; be the run length, then
RESULTS AND DISCUSSION
Table 1: Descriptive statistics of Batch production and defects patterns
Defective
Statistic Batch Size Count Defect Rate Time Period Poisson A Defect Events
Mean 99.5 2.145 0.0216 100.5 3.845 3.865
Median 101 2 0.0174 100 3.57 4
Minimum 80 0 0 1 1.45 1
Maximum 119 14 0.1413 200 11.52 12
Standard Dev. 12.03 2.27 0.0227 57.88 1.52 2.38
Standard Error 0.85 0.16 0.0016 4.09 0.11 0.17
Skewness -0.0546 244 242 0 1.87 0.66
Kurtosis 1.74 11.1 10.91 1.8 8.5 3.5

Table 1 shows an average batch size of 200 units with a defect
count of ~2, resulting in a failure rate of 2.16%. The defect rate and
counts are positively skewed with a high kurtosis, indicating an
exceptional defect count. The poison estimates lambda (3.85) and
mean of 3.87 are nearly identical, indicating the usage of the
Poisson model. Since the variable demonstrates moderacy for time
period and batch size with less defect count, it implies that, while
production is constant, defect incidences are unstable and prone
to spikes.

Table 2: Summary statistics of Bayesian model parameters
mean SD 100%  50% 90%
Intercepts -3.82  0.05 -3.88 -382 -375
Mean PPD  2.14 0.15 1.96 2.14 2.33

Table 2 above deduced a strong stability in the Bayesian model
with the intercepts being estimated at -3.82 with a standard
deviation and mean value of 0.05 and -3.82, indicating
convergence and minute uncertainty. The mean PPD is at 2.14 with
SD =0.15, 90%, quantile value of 2.32, which reflects a moderate
predictive variability and also suggests a good model efficiency and
consistent goodness of fit.

Table 3: Convergence Diagnostic for Bayesian Model Parameter

Posterior lower

Batch ID mean limits upper limits
1 0.0192 0.005 0.069

2 0.0192 0.0004 0.0697

3 0.0192 0.00491 0.6977

4 0.0192 0.00491 0.6987

5 0.0192 0.00491 0.6977

6 0.0192 0.00491 0.6977

Table 3 reveals that all of the parameters have excellent
convergence, with an intercept of 1, log posterior, and mean PPD,

suggesting no non-convergence. The effective sample size (n-eff =
587 for intercepts, 892 mean PPD, and 521 for log posterior) is
sufficient to ensure the posterior estimate is stable. Meanwhile,
because the posterior mean is near zero (0) and the intercepts are
zero (0), the mean PPD is 0.01, and the log posterior is 0.03,
indicating that the production line is well-mixed and the estimates
are reliable for inference.

Table 4: Posterior Means and Credible Intervals of Defect Rates
Batches

posterior lower

Batch ID mean limits upper limits
1 0.0192 0.005 0.069

2 0.0192 0.0004 0.0697

3 0.0192 0.00491 0.6977

4 0.0192 0.00491 0.6987

5 0.0192 0.00491 0.6977

6 0.0192 0.00491 0.6977

The posterior mean defect rate was stable across all batches at
0.0192, but the credible intervals varied, indicating variances in
estimating precision. The intervals (0.005, 0.069) and (0.0004,
0.0697) are also relatively narrow in uncertainty. In comparison, the
intervals were substantially broader (0.00491, 0.6977), indicating
increased variability and uncertainty in defect rate estimations.
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Figure 2: Distribution of Defects counts

Figure 1 illustrates the empirical distribution of defect proportions
across batches, suggesting that the data are appropriate for
modeling the binomial distribution. The plot depicts both variance
and defect rate, which are important indicators for monitoring the
quality of the control process. Figure 2 shows the frequency of
defect counts per batch, which justifies the use of the Poisson
model to monitor undesirable discrete variables in the production
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Distributions.

The Q-Q plot assessed the model's statistical stability with respect
to the defect data. The first graphic compares the proportion to a
binomial distribution, with all points following the diagonal,
indicating strong model conformance. The second plot compares
the defect count to the Poisson distribution, which aligns and
justifies the model's tracking of defect events. However, the two
graphs provide statistical evidence for both the Binomial and
Poisson models in terms of production based on data quality.
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Figure 4: Traditional Control Chart Performance.

The P-chart depicts the progressive approach of monitoring poor
proportions. Since some of the data are outside the control limit, it
provides a baseline to evaluate the sensitivity of the Bayesian
adaptive strategy. The C-chart monitors the number of flaws
however, because the fixed performance is limited, this is in
contrast to the Bayesian dynamic Poisson.
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Figure 5: Bayesian Control Chart for Defect Rate
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Figure 5 displays the Bayesian binomial model's real-time
monitoring capability, which updates the defect rate estimation with
each batch. Because some of the points fall outside the control
limit, there are identifiable causes of variation in the manufacturing
process.

10 alerts
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0.0 L
0 50 100 150 200
Batch

Figure 6: Bayesian Binomial Control Chart for Defect Event
Figure 6 depicts the application of the Bayesian technique to the
Poisson distribution, which is used to track discrete occurrences.
Furthermore, it is utilized to detect a shift in the frequency of
recurrence, which is crucial for timely action.

Defect Events

Conclusion

Adopting a Bayesian control chart allows for a more intelligent and
adaptive method to monitor production quality in the automated
industry. Unlike the traditional method, which is based mostly on a
fixed threshold, the model incorporates prior information and
continuously updates and combines new data, making it flexible to
variations in defect rates. This allows for early discovery of
problems and continual improvement. Most importantly, the
integration of two distributions provides flexibility in dealing with
diverse problems throughout the production environment. Overall,
Bayesian-based quality monitoring has improved operational
efficiency while allowing automated enterprises to remain
competitive in fields that require reliability and precision.

Recommendation

Bayesian control charts, that enable adaptive and dynamic
detection of process variation, should be employed as part of the
daily routine system monitoring to enhance the quality and
efficiency of automated companies. Organizations should invest in
infrastructure data to provide seamless Bayesian model updates,
as well as train their quality control staff to build the skills required
for effective method application and interpretation. Finally, the
management team should foster a culture of continuous
improvement by providing Bayesian-driven insight into lean
manufacturing and six sigma processes, ensuring long-term
competitiveness and sustainable development growth.
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