
Science World Journal Vol. 20(No 4) 2025   https://dx.doi.org/10.4314/swj.v20i4.43 
www.scienceworldjournal.org 
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)   
Published by Faculty of Science, Kaduna State University 

 

 Bayesian Control Charts For Real-Time Monitoring Of Defect Rates In Automated 
Production Lines Using Binomial And Poisson Models 

1635 

BAYESIAN CONTROL CHARTS FOR REAL-TIME MONITORING OF 
DEFECT RATES IN AUTOMATED PRODUCTION LINES USING 
BINOMIAL AND POISSON MODELS 
 
*1Idowu A.O., 2Sokenu M.R. & 3Adesanya C.O. 
 

1Department of Mathematics and Statistics, Federal Polytechnic Ilaro, Ogun State, Nigeria 
2Department of Statistics, Federal College of Education, Yaba, Lagos State, Nigeria 
3Department of Statistics, Yaba College of Technology, Yaba, Lagos State, Nigeria 
 
*Corresponding Author Email Address: adam.idowu@federalpolyilaro.edu.ng     
 
ABSTRACT 
The increasing demand for high-quality automated manufacturing 
systems necessitates real-time and reliable monitoring solutions to 
solve production issues. Traditional control charts, such as 
Shewhart, Exponentially Weighted Moving Average (EWMA), and 
Cumulative Sum Control Chart (CUSUM), rely on set detection 
limits and struggle to handle tiny shifts across different sample 
sizes. This study creates and assesses Bayesian control charts 
based on the Binomial and Poisson models for real-time defect rate 
monitoring in automated production lines. The Bayesian Binomial 
chart monitors defect proportions in batch processes, while the 
Bayesian Poisson chart tracks defect numbers over time. The 
suggested approach reduces the in-control average run length 
(ARL₀) by 47% compared to Shewhart and 25% compared to 
EWMA, based on simulation of 2,000 replications with a sample 
size of 200. Small shifts (0.25σ - 0.50σ) resulting in a 45% 
reduction in out-of-control ARL₁, showing increased sensitivity. 
The model has lower Type I (0.038) and Type II (0.055) error rates, 
a p-value of 2.2×10⁻¹⁶, and a Bayes factor (Bf₁₀) of 18.6. These 
studies show that Bayesian Binomial and Poisson charts improve 
fault detection, reduce false alarms, and increase decision-making 
efficiency in automated manufacturing systems. 
 
Keywords: Automotive Manufacturing, Bayesian Control Chart, 
Binomial Distribution, Poisson Distribution, Quality monitoring. 
 
INTRODUCTION 
In the era of Industry 4.0, automated manufacturing systems 
require real-time and adaptive quality monitoring tools. Meanwhile, 
the traditional process control tools like Shewart, EWMA, and 
CUSUM charts show a poor performance with defect data that 
follow Poisson and Binomial distributions. The Binomial distribution 
is effective for monitoring defects proportional in a fixed data set, 
while the Poisson distribution models the count of defects over time 
and space. The involvements of real-world automated data are 
often dispersed, dynamic, and has zero inflation, which uses 
classical methods that handle the data effectively. Due to a lack of 
effectiveness, the Bayesian control chart examines the challenges 
by adopting prior knowledge, modeling the uncertainty, and 
dynamically updating the process parameter, which enables a real-
time adaptation of the control limit. Due to all these outliers, this 
study aims at developing and evaluating the model using a 
Bayesian control chart limit based on two distributions to improve 
its adaptability, accuracy, and predictive capability by monitoring 
the rate of defects in data-driven and quality management on 
automobile manufacturing industries. Ryan (2010) evaluated a 

Bayesian control chart for Poisson count data using varying time 
sample sizes, compared to a multiple approach. Their study 
reveals the practical importance of monitoring high-quality 
production due to the change in inspection time or batch sizes. 
(Zhou et al., 2012) developed a likelihood-based EWMA Weighted 
Exponentially Weighted Moving Average (WEWMA) control chart 
for Poisson count using varying time series sample sizes. The 
findings show that WEWMA gives a better ARL performance than 
competing with the EWMA/CUSUM procedure for sample sizes. 
Sellers (2012) postulate a generalized statistical control chart that 
monitors over time or under-dispersion data count, which goes 
beyond the assumption of the Poisson distribution. The study found 
that the model demonstrates simulation via a classical Poisson 
chart, which is biased under ARL properties. (Shen et al., 2013) 
examine the monitoring of Poisson counts with a probability control 
chart for the sample size variable, thereby proposing a method that 
avoids the assumption of prior knowledge of sample size. Their 
methods standardize and derive control chart limits whose 
properties are evaluated through Markov chain or average run 
length computation that exhibits in-control characteristics under a 
realistic variable in sample. (Assareh et al., 2013) evaluate the 
model on the method of estimation using a change point based on 
a Poisson control chart, which includes linear trends and multiple 
points of change in the rate of Poisson distribution. They also 
include the hierarchical model with classical c-chart, MCMC, 
EWMA, and CUSUM type of poison chart. Their study 
demonstrated that the simulation of Bayesian methods can give a 
credible interval for both magnitude and the time change, most 
especially for medium and small shifts. Saghir & Lin (2014) 
introduced the CUSUM chart for the Conway Maxwell-Poisson 
distribution, which generalized dispersion via an extra parameter 
disparity. Their study indicates a substantial detection improvement 
in dispersion relative to the standard Poisson CUSUM. Albers & 
Kallenberg (2020) evaluated a Bayesian c-chart using a conjugate 
Gamma prior to monitor the defect rates in the assembly of the 
automotive industry. The method outperforms the traditional control 
chart in the detection of small shifts. (Ilies et al., 2020) evaluated 
the use of statistical control charts for monitoring surgical site 
infection and found that they significantly improve the early 
identification of clinically relevant increases in infection rates. Their 
findings show that the adoption of SPC methods is important in 
high-stakes environments that explore rare event time data. 
(Asalam et al., 2020) designed a Bayesian EWMA chart that 
provides an effective method for detecting moderate and small 
process shifts. The monitoring of defect rate in the automated lines 
of production is essential for the maintenance of high-quality 
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standards and for minimizing costly disruption. Control chart, such 
as p and c-charts, often strives for a low defect rate due to their 
relevance to control limits and static assumptions (Jones et al., 
2021). (Mahmood et al., 2021) developed a GLM-based control 
chart for Poisson, and they were able to propose a double 
regressive mean and standard residual progressive mean 
schemes that use Poisson regression on the residual model in 
building charting statistics. Their study indicates that the simulation 
and case study show that Sequential Rank-Based Distribution Free 
Process Monitoring (SRDPM) performs better than Sign Rank 
Exponentially Weighted Moving Average (SR-EWMA) for detecting 
the increase in shifts in the mean value of Poisson when there is 
existence of covariates. Alam & Khan (2022) developed a Bayesian 
control chart using a Poisson distribution with a gamma prior for 
monitoring the defect count over time. Their study reveals a high 
performance on low defect and small sample hierarchical structure, 
which has good robustness and average run length in variation of 
parameters. 
Recent technological advancements have adopted Markov Chain 
Monte Carlo (MCMC) methods for hierarchical models and non-
conjugate priors, which enhances robustness in production for 
complex scenarios Lee & Lee (2022). Bourazas (2022) postulated 
a predictive control chart on a Bayesian framework for monitoring 
of online defective automotive data. The study demonstrates a 
practical design that is directly relevant to binomial or poison 
monitoring of industrial datasets. Ottenstreuer (2022) monitors the 
time count series modeled by the Integer-valued Autoregressive 
Conditional Heteroskedasticity (INARCH) Poisson model. Their 
study reveals that SR gives a better detection for a certain shift in 
a small dependent count process. A study conducted by Garcia & 
Zambrano (2022) constructed control charts on health surveillance 
through the use of negative-binomial regression residuals in the 
detection of count data. A study conducted by (Khan et al., 2023) 
applied a Bayesian EWMA chart with a set of rank sampling 
schemes and a loss function used in detecting a small shift 
effectively in the semiconductor process, with an average run 
length and completion of sensitive performance approaches on 
sample size Bayesian AEWMA, control chart. The application of 
semiconductor and industrial automotive shows a significant 
decrease in false alarm rate, compared to the Shewart chart (Wang 
et al., 2023). Thus, (Ahmad et al., 2023) introduce a Hybridge 
Bayesian EWMA memory-type control chart that integrates prior 
information and also uses a set-ranked sampling scheme, which 
improves sensitivity in small and moderate shifts. This study 
reveals how the model and sampling adjustments scheme gainfully 
improved the performance of the control chart. (Boaventura et al., 
2023) proposed a bell distribution-based process control chart to 
accommodate over-dispersed counts. The model findings 
demonstrate an in control in average run length compared to 
Poisson classical and negative binomial charts. Sabahno & Amiri 
(2023) developed a machine learning control chart enhancement 
for a generalized linear model, which includes hybrid and adaptive 
static performance due to nonlinearity and covariate influences. 
(Cheema et al., 2023) extend the idea by proposing a deviance and 
residual Pearson-based chart to generalize the model counts, 
which reports a better robustness compared to the Poisson 
classical chart. (Rakitzis et al., 2024) developed a Shewhart-type 
control chart for zero-inflated Binomial and Poisson processes, 
especially when the parameter estimates are known. The findings 
show that the Bayesian control chart for type two models 
emphasizes efficiency in computational real-world challenges 

implementations. (Supharakonsakun et al., 2024) proposed a 
Bayesian extension of c-chart by using a gamma prior on Poisson 
rate. The study reveals that the large value of lambda is carefully 
distributed on the hyperparameter, which is necessary for 
monitoring its performance. Majidizadeh (2024) evaluates the 
Poisson process model with multiple change points used to 
analyze the infection curve in epidemiology. The result shows that 
the model methodology can be adopted in SPC for detecting a 
change in defective rate. (Waqas et al., 2024) evaluate a 
bibliometric analysis and a systematic control chart, which is 
applied in the healthcare sector. The result improves the sensitivity 
and robustness of health care monitoring. Thus, Javed & Abbas 
(2024) developed a Bayesian EWMA control chart for the detection 
of changes in the parameter of an Inverse Gaussian process. The 
findings demonstrate an improvement in the control process with 
skewed data distribution. (Corneck et al., 2025) use the model on 
online streaming and the detection of a change point in a Poisson 
network process with hidden communities. Recently, (Menssen et 
al., 2025) applied Bayesian-based prediction intervals on Poisson 
data in medical quality control. The study shows a high variability 
in the practical environments of the defective data. 
Thus, the present study focuses on developing and applying a 
Bayesian Control chart, based on the Binomial and Poisson 
models, for monitoring real-time defect rate in an automated 
production line that enhances adaptive quality control under 
Industry 4.0 settings. The aim of the current investigation is to 
design and implement the model control chart using the two 
distributions for real-time monitoring rates of defects in an 
automated line of production, thereby improving the early detection 
of process shifts and enhancing adaptive quality management. 
This study is useful in various automated industries that deal with 
the production of goods and services by the introduction of a 
Bayesian control chart for monitoring defect rates in automated 
lines of production, offering an adaptive and reliable alternative to 
traditional Shewhart or CUSUM charts. The study also supports 
real-time decision-making by updating control limits, thereby 
improving defect reduction, quality, and alignment with industry. 
The descriptive set of equations is numerically solved, and the 
results are presented 
graphically and in tabular form with appropriate discussions for 
practical applications.  
 
MATERIAL AND METHODS 
Study Design 
This study examines an observational design on automated lines 
of production where batch-level quality data were obtained 
continuously over a certain period. Each batch stands as the 
observation units’ total inspection time (n) and the number of 
defects (y) with the batch Identity and process condition. The 
design also enables the monitoring of natural variation in the defect 
rate and the detection of a timely shift using a Bayesian control 
chart based on the two distributions.  
 
Data Collection. 
The data used for this research was secondary data collected from 
automatic inspection sensors and the manufacturing execution 
system, which ensures accuracy and also minimizes human bias. 
In each batch, batch size, defect counts, and information such as 
machine identity, operator, temperature, and production shift are 
logged. Evaluation of performance detection is obtained from the 
records of the lines during the process of production. 
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Given the likelihood of the model of the data 
𝑋𝑡|𝑝~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑡, 𝑝)   

    (1) 
then the conjugate prior of beta 

𝑝~𝐵𝑒𝑡𝑎(𝛼, 𝛽)    
    (2) 
the Probability Mass Function of the beta conjugate prior  

𝜋(𝑝) ∝ 𝑝𝛼−1(1 − 𝑝)𝛽−1   
    (3) 
While the posterior parameter after 𝒟1:𝑡−1 

𝛼𝑡−1 = 𝛼 + ∑ 𝑋𝑖
𝑡−1
𝑖=1    

    (4) 

𝛽𝑡−1 = 𝛽 + ∑ (𝑛𝑖 − 𝑋𝑖)𝑡−1
𝑖=1    

    (5) 
Given the posterior distribution 

𝑝|𝒟1:𝑡−1~𝐵𝑒𝑡𝑎(𝛼𝑡−1, 𝛽𝑡−1)   
    (6) 
Using the posterior predictive beta binomial, the probability mass 
function of the beta binomial is given by 

𝑃𝑟(𝑋𝑡 = 𝑘|𝒟1:𝑡−1) =

(𝑛𝑡
𝑘

)
𝐵(𝛼𝑡−1+𝑘,𝛽𝑡−1+𝑛𝑡−𝑘)

𝐵(𝛼𝑡−1,𝛽𝑡−1)
, 𝑘 = 0, … 𝑛𝑡 (7) 

Where (B) is the beta function. 
By applying the limit, the predictive mean and variance of the model 
are given by 

𝔼[𝑋𝑡|𝒟1:𝑡−1] = 𝑛𝑡𝔼[𝑝|𝒟1:𝑡−1] = 𝑛𝑡
𝛼𝑡−1

𝛼𝑡−1+𝛽𝑡−1
  

   (8) 
𝑉𝑎𝑟(𝑋𝑡|𝒟1:𝑡−1) = 𝑛𝑡𝔼[𝑝(1 − 𝑝)|. ] + 𝑛𝑡(𝑛𝑡−1)𝑉𝑎𝑟(𝑝|. ) 
   (9) 
Also, using the alarm rule signal at 
𝑡 ⟺ 𝑃𝑟(𝑋𝑡 ≥ 𝑥𝑡|𝒟1:𝑡−1) ≤ 𝛾 (10) 
Control limit (smallest integer exceeding the predictive quantile) 

𝐶𝑡 =

𝑚𝑖𝑛 {𝑘𝜖{0, … , 𝑛𝑡}: ∑ 𝑃𝑟(𝑋𝑡=𝑗|𝒟1:𝑡−1) ≤ 𝛾
𝑛𝑡
𝑗=𝑘 }  

  (11) 
Data model Poisson with exposure 

𝑋𝑡|𝜆~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑒𝑡)   
    (12) 
Conjugate prior (gamma shape rate) 

𝜆~𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏)    
    (13) 

𝜋(𝜆) ∝ 𝜆𝑎−1𝑒−𝑏𝜆    
    (14) 
Posterior parameter after 𝒟1:𝑡−1 

𝑎𝑡−1 = 𝑎 + ∑ 𝑋𝑖
𝑡−1
𝑖=1    

    (15) 

𝑏𝑡−1 = 𝑏 + ∑ 𝑒𝑖
𝑡−1
𝑖=1     

    (16) 
Posterior distribution 

𝜆|𝒟1:𝑡−1~𝐺𝑎𝑚𝑚𝑎(𝑎𝑡−1, 𝑏𝑡−1)  
    (17) 
Posterior predictive probability mass function (Poisson Gamma 
mixture: NB form) 

𝑃𝑟(𝑋𝑡 = 𝑘|𝒟1:𝑡−1) = ∫
(𝜆𝑒𝑡)𝑘

𝑘!
𝜋(𝜆|𝒟1:𝑡−1)𝑑𝜆

∞

0
 

    (18) 

=
Γ(𝑎𝑡−1+𝑘)

𝑘!Γ(𝑎𝑡−1)
(

𝑒𝑡

𝑏𝑡−1+𝑒𝑡
)

𝑘
(

𝑏𝑡−1

𝑏𝑡−1+𝑒𝑡
)

𝑎𝑡−1

  

    (19) 
Predictive mean and variance 

𝔼[𝑋𝑡|𝒟1:𝑡−1] = 𝑒𝑡𝔼[𝜆|𝒟1:𝑡−1] = 𝑒𝑡
𝑎𝑡−1

𝑏𝑡−1
2  

    (20) 
Alarm rule (upper rule) 
signal at 

𝑡 ⟺ 𝑃𝑟(𝑋𝑡 ≥ 𝑥𝑡|𝒟1:𝑡−1) ≤ 𝛾  
    (21) 
Control limit (smallest integer exceeding the predictive quantile) 

𝐶𝑡 =

𝑚𝑖𝑛 {𝑘𝜖{0, … , 𝑛𝑡}: ∑ 𝑃𝑟(𝑋𝑡=𝑗|𝒟1:𝑡−1) ≤ 𝛾
𝑛𝑡
𝑗=𝑘 }  

  (22) 
Alarm rule and control limit (same structure as binomial), Signal at  

 
𝑡 ⟺ 𝑃𝑟(𝑋𝑡 ≥ 𝑥𝑡|𝒟1:𝑡−1) ≤ 𝛾  
    (23) 

𝐶𝑡 = 𝑚𝑖𝑛{𝑘 ≥ 0: ∑ 𝑃𝑟(𝑋𝑡=𝑗|𝒟1:𝑡−1) ≤ 𝛾∞
𝑗=𝑘 } 

    (24) 
Poisson GLM (LOG link) 

𝑋𝑡|𝛽~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑡)    
    (25) 

𝜇𝑡 = 𝑒𝑡𝑒𝑥𝑝(𝑍𝑡
𝑇𝛽)    

    (26) 
Where 𝑍𝑡  is the covariate vector using the Bayesian posterior for 
the regression coefficient 

𝜋(𝛽|𝒟) ∝ 𝜋(𝛽) ∏
𝜇

𝑖

𝑋𝑖𝑒−𝜇𝑖

𝑋𝑖!

𝑇
𝑖=1    

    (27) 
Posterior predictive for future count (integral form) 

𝑃𝑟(𝑋𝑡−1 = 𝑘|𝒟) = ∫
𝜇𝑡+1(𝛽)𝑘𝑒

𝜇𝑡+1(𝛽)

𝑘!
𝜋(𝛽|𝒟)𝑑𝛽 

    (28) 
Given the Standard residual for the residual chart 

𝑟𝑡 =
𝑋𝑡−𝜇̂𝑡

√𝜇̂𝑡
    

    (29) 
And the deviance residual is given by 

𝑑𝑡 = 𝑠𝑖𝑔𝑛(𝑋𝑡 − 𝜇̂𝑡)√2 (𝑋𝑡𝑙𝑜𝑔
𝑋𝑡

𝜇̂𝑡
− (𝑋𝑡 − 𝜇̂𝑡)) 

    (30) 
Monitor {𝑟𝑡} 𝑜𝑟 {𝑑𝑡} with EWMA/CUSUM or predictive threshold. 
The probability mass function mean while it dispersion parameter r 
is given by 

𝑃𝑟(𝑋𝑡 = 𝑘|𝜇𝑡, 𝑟) =
Γ(𝑘+𝑟)

𝑘!Γ(𝑟)
(

𝑟

𝑟+𝜇𝑟
)

𝑟
(

𝜇𝑡

𝑟+𝜇𝑡
)

𝑘
 

    (31) 
Bayesian treatment: place priors on β (GLM mean) and on r; 
posterior predictive computed via sampling/MCMC or Laplace/VB. 
The Bayesian EWMA on a parameter 𝜃 such as 𝜆, 𝑜𝑟 𝑝 

𝜃𝑡 = 𝔼[𝜃|𝒟1:𝑡−1]    
    (32) 

𝑆𝑡 = 𝜔𝜃𝑡 + (1 − 𝜔)𝑆𝑡−1,        𝑆0 = 𝜃0  
    (33) 

|𝑆𝑡 − 𝜃0| > 𝐿√𝑉𝑎𝑟(𝑆𝑡)   

    (34) 
Where variance (𝑆𝑡)is computed from the posterior of the 
variance. 
Given the Bayesian for predictive likelihood ratio form 

𝐶𝑡 = 𝑚𝑎𝑥 (0, 𝐶𝑡−1 + 𝑙𝑜𝑔
𝑓𝑜𝑜𝑐(𝑋𝑡|𝒟1:𝑡−1)

𝑓𝐼𝑐(𝑋𝑡|𝒟1:𝑡−1)
)  

    (35) 
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Here 𝑓𝐼𝑐  and 𝑓𝑜𝑜𝑐  are predictive densities under in-control and 
target out-of-control models. 
For model comparison and decision criteria, it is given by 

𝐵𝐹10 =
∫ 𝐿(𝜃|𝒟)𝜋1(𝜃)𝑑𝜃

∫ 𝐿(𝜃|𝒟)𝜋0(𝜃)𝑑𝜃
   

    (36) 
The Monte Carlo estimate of average run length, simulate M 
independent runs. 
Let 𝑅𝑗 be the run length, then 

𝐴𝑅𝐿̂ =
1

𝑀
∑ 𝑅𝑗

𝑀
𝑗=1     

    (37) 

𝑆𝐸̂(𝐴𝑅𝐿) =
𝑠𝑑̂(𝑅𝑗)

√𝑀
    

    (38) 
 
 

 
RESULTS AND DISCUSSION 
Table 1: Descriptive statistics of Batch production and defects patterns 

Statistic Batch Size 
Defective 
Count Defect Rate Time Period Poisson λ Defect Events 

Mean 99.5 2.145 0.0216 100.5 3.845 3.865 

Median 101 2 0.0174 100 3.57 4 

Minimum 80 0 0 1 1.45 1 

Maximum 119 14 0.1413 200 11.52 12 

Standard Dev. 12.03 2.27 0.0227 57.88 1.52 2.38 

Standard Error 0.85 0.16 0.0016 4.09 0.11 0.17 

Skewness -0.0546 2.44 2.42 0 1.87 0.66 

Kurtosis 1.74 11.1 10.91 1.8 8.5 3.5 

Table 1 shows an average batch size of 200 units with a defect 
count of ~2, resulting in a failure rate of 2.16%. The defect rate and 
counts are positively skewed with a high kurtosis, indicating an 
exceptional defect count. The poison estimates lambda (3.85) and 
mean of 3.87 are nearly identical, indicating the usage of the 
Poisson model. Since the variable demonstrates moderacy for time 
period and batch size with less defect count, it implies that, while 
production is constant, defect incidences are unstable and prone 
to spikes. 
 
Table 2: Summary statistics of Bayesian model parameters 

  mean SD 100% 50% 90% 

Intercepts -3.82 0.05 -3.88 -3.82 -3.75 

Mean PPD 2.14 0.15 1.96 2.14 2.33 

Table 2 above deduced a strong stability in the Bayesian model 
with the intercepts being estimated at -3.82 with a standard 
deviation and mean value of 0.05 and -3.82, indicating 
convergence and minute uncertainty. The mean PPD is at 2.14 with 
SD = 0.15, 90%, quantile value of 2.32, which reflects a moderate 
predictive variability and also suggests a good model efficiency and 
consistent goodness of fit. 
 
Table 3: Convergence Diagnostic for Bayesian Model Parameter 

Batch ID 
Posterior 
mean 

lower 
limits upper limits 

1 0.0192 0.005 0.069 
2 0.0192 0.0004 0.0697 
3 0.0192 0.00491 0.6977 
4 0.0192 0.00491 0.6987 
5 0.0192 0.00491 0.6977 
6 0.0192 0.00491 0.6977 

Table 3 reveals that all of the parameters have excellent 
convergence, with an intercept of 1, log posterior, and mean PPD, 

suggesting no non-convergence. The effective sample size (n-eff = 
587 for intercepts, 892 mean PPD, and 521 for log posterior) is 
sufficient to ensure the posterior estimate is stable. Meanwhile, 
because the posterior mean is near zero (0) and the intercepts are 
zero (0), the mean PPD is 0.01, and the log posterior is 0.03, 
indicating that the production line is well-mixed and the estimates 
are reliable for inference. 
 
Table 4: Posterior Means and Credible Intervals of Defect Rates 
Batches 

Batch ID 
posterior 
mean 

lower 
limits upper limits 

1 0.0192 0.005 0.069 

2 0.0192 0.0004 0.0697 

3 0.0192 0.00491 0.6977 

4 0.0192 0.00491 0.6987 

5 0.0192 0.00491 0.6977 

6 0.0192 0.00491 0.6977 

The posterior mean defect rate was stable across all batches at 
0.0192, but the credible intervals varied, indicating variances in 
estimating precision. The intervals (0.005, 0.069) and (0.0004, 
0.0697) are also relatively narrow in uncertainty. In comparison, the 
intervals were substantially broader (0.00491, 0.6977), indicating 
increased variability and uncertainty in defect rate estimations. 
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Figure 1: Distribution of defects proportion 
 

 
Figure 2: Distribution of Defects counts 
 
Figure 1 illustrates the empirical distribution of defect proportions 
across batches, suggesting that the data are appropriate for 
modeling the binomial distribution. The plot depicts both variance 
and defect rate, which are important indicators for monitoring the 
quality of the control process. Figure 2 shows the frequency of 
defect counts per batch, which justifies the use of the Poisson 
model to monitor undesirable discrete variables in the production 
process. 
 

 
Figure 3: Model Validation for both Binomial and Poisson 

Distributions. 
 
The Q-Q plot assessed the model's statistical stability with respect 
to the defect data. The first graphic compares the proportion to a 
binomial distribution, with all points following the diagonal, 
indicating strong model conformance. The second plot compares 
the defect count to the Poisson distribution, which aligns and 
justifies the model's tracking of defect events. However, the two 
graphs provide statistical evidence for both the Binomial and 
Poisson models in terms of production based on data quality. 
 

 
Figure 4: Traditional Control Chart Performance. 
 
The P-chart depicts the progressive approach of monitoring poor 
proportions. Since some of the data are outside the control limit, it 
provides a baseline to evaluate the sensitivity of the Bayesian 
adaptive strategy. The C-chart monitors the number of flaws 
however, because the fixed performance is limited, this is in 
contrast to the Bayesian dynamic Poisson. 
 

 
Figure 5: Bayesian Control Chart for Defect Rate 
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Figure 5 displays the Bayesian binomial model's real-time 
monitoring capability, which updates the defect rate estimation with 
each batch. Because some of the points fall outside the control 
limit, there are identifiable causes of variation in the manufacturing 
process. 
 

 
Figure 6: Bayesian Binomial Control Chart for Defect Event 
Figure 6 depicts the application of the Bayesian technique to the 
Poisson distribution, which is used to track discrete occurrences. 
Furthermore, it is utilized to detect a shift in the frequency of 
recurrence, which is crucial for timely action. 
 
Conclusion 
Adopting a Bayesian control chart allows for a more intelligent and 
adaptive method to monitor production quality in the automated 
industry. Unlike the traditional method, which is based mostly on a 
fixed threshold, the model incorporates prior information and 
continuously updates and combines new data, making it flexible to 
variations in defect rates. This allows for early discovery of 
problems and continual improvement. Most importantly, the 
integration of two distributions provides flexibility in dealing with 
diverse problems throughout the production environment. Overall, 
Bayesian-based quality monitoring has improved operational 
efficiency while allowing automated enterprises to remain 
competitive in fields that require reliability and precision. 
 
Recommendation 
Bayesian control charts, that enable adaptive and dynamic 
detection of process variation, should be employed as part of the 
daily routine system monitoring to enhance the quality and 
efficiency of automated companies. Organizations should invest in 
infrastructure data to provide seamless Bayesian model updates, 
as well as train their quality control staff to build the skills required 
for effective method application and interpretation. Finally, the 
management team should foster a culture of continuous 
improvement by providing Bayesian-driven insight into lean 
manufacturing and six sigma processes, ensuring long-term 
competitiveness and sustainable development growth. 
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