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ABSTRACT 
The study presents results of the linear and non-linear optical 
properties of GaAs quantum dots. The reported work aims to 
provide new results of the quantum dot optical properties confined 
in Hua plus modified Eckart (HPME) potential. To obtain analytical 
expressions for the energy eigenvalues and the wave functions, we 
solved the time-independent Schrödinger equation for the HPME 
potential by using the parametric Nikiforov-Uvarov (NU) method. 
Investigation of the linear, third-order nonlinear, and total 
absorption coefficients and refractive index changes was done with 
the help of the density matrix approach. The results showed that 
the energy decreases in a linear manner as the potential 
parameter, V0. Also, it is observed that as the barrier slope 
increases, the peaks of the linear, third-order linear, and total 
absorption coefficient tend to higher values of energy. Furthermore, 
as the barrier slope increases, the change in refractive indices 
increases, and their positions shift to higher energies. Additionally, 
an increase in the structure parameters and optical intensity greatly 
influences the absorption coefficients and the refractive index 
changes of the quantum dots.  
 
Keywords: Optical Properties; Quantum dot; Schrödinger 
equation; Nikiforov-Uvarov method; Density matrix method 
 
INTRODUCTION 
Low-dimensional structures (LDS) have been a central area of 
research for many years. They are semiconductor materials, with 
scale in one or two dimensions, such that they have electronic 
properties that clearly differ from the same bulk material. These 
properties are altered by the effects of quantum mechanics. All 
over the world, increasing research time has been devoted to the 
preparation, study, and application of low-dimensional structures. 
Investigation into these structures has aggressively transformed 
the science of condensed matter, particularly semiconductor-
related materials. The complex nature of LDS offers scientists and 
engineers better insights and opportunities to design tunable, 
generation photonic and electronic devices. The wizardry of 
modern fabrication methods such as molecular beam epitaxy 
(MBE) and metal–organic chemical vapour (MOCVD) deposition 
has now led to the possibility of creating such low-dimensional 
structures in reality and practice. These advanced techniques used 
to grow high-quality epitaxial layers of semiconductors on 
semiconductor crystal substrates are increasingly becoming very 
crucial for the advancement of the semiconductor electronics 
industry. 
Currently, quantum wells (QW), quantum wires (QWR), and 
quantum dots (QD) are the most commonly studied LDS. Quantum 
dots (QD) are nanostructures that are quantum confined in 3 
dimensions, which results in many peculiar and useful optical and 
transport properties. Quantum Confinement is the spatial 
confinement/entrapment of pairs of electrons and holes in one or 

more dimensions within a material. Charge carrier confinement in 
QDs happens in three directions. In low-temperature physics, 
impurity influences many physical properties, such as optical and 
transport phenomena. Due to the fact that semiconductors have a 
band gap in their electronic band structure, quantum confinement 
is observed more in semiconductors. Metals do not have a band 
gap; therefore, quantum confinement is less obvious. To observe 
quantum confinement, the dimensions have to be below 2 nm. 
Since the beginning of the quantum theory, the study of quantum 
confinement has been one of the most interesting subjects of 
research. The research interest in the physical properties of 
quantum confined structures like quantum wells (1- dimensional 
confinement), quantum wires (2-dimensional confinement), and 
QDs (3-dimensional confinement), has become more significant, 
with the recent progress in semiconductor nanotechnology 
(Theerapong et al., 2008; Tomoaki et al., 2008; Xiang-Hong et al., 
1998). Due to quantum size effects in these structures, atomic-like 
discrete energy levels (sub-bands) are formed, in contrast to the 
energy bands in bulk crystals. 
A lot of attention has been drawn to semiconductor quantum dot 
(QD) structures because of their peculiar physical properties and 
their potential applications in micro and optoelectronic devices 
(Ataser et al., 2018; Bhattacharya et al., 2004; Kang et al., 2015; 
Karimkhani & Moravvej-Farsh, 2010; Rishinaramangalam et al., 
2015; Teleb et al., 2011), life sciences and biotechnology (Jorge et 
al., 2006; Liang et al., 2006), thermoelectrics (Pennelli, 2015; 
Cecchi et al., 2015). Semiconductor QDs have potential 
applications in various optoelectronic devices, in biological 
labeling, in light-emitting diodes (LEDs), detectors, etc. They also 
have applications in solar cells as a result of their relatively higher 
efficiency compared to bulk semiconductors (Ataser et al., 2018; 
Ee et al., 2008; Jorge et al., 2006; Liang et al., 2006; Luque et al., 
2010). In zero-dimensional structures, the free carriers are 
entrapped in a tiny region by a confinement potential that provides 
the quantization of electronic energy states dependent on the size 
of the dots. Recently, the optical properties of spherical quantum 
dots have been reported theoretically (Mathe et al.2021; Onyeaju 
& Onate, 2020; Onyenegecha, 2022; Tshipa, 2019). The optical 
properties, such as index refraction, coefficient of absorption, and 
absorption cross section, can be determined easily once the linear 
and nonlinear susceptibilities of the QD are known. The nonlinear 
contribution of the dielectric constant is enhanced by large electric 
dipole matrix elements coupled with small energy differences 
between subbands, so one expects that the intensity of light plays 
an important part in the optical properties of the QDs. Hence, the 
size of dots can influence the values of electronic energy 
eigenvalues and their corresponding envelope functions. 
 
MATERIALS AND METHODS 
The Schrödinger equation is a fundamental wave equation in 
physics; it is essential for understanding the nature and behavior of 
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particles in quantum systems. One of the fundamental challenges 
in quantum mechanics is to determine exact solutions to the 
Schrödinger equation in bound states for potentials of considerable 
interest. These solvable potentials are very vital to successfully 
implement approximate methods in studying physical systems. 
Different techniques applied by various authors to obtain the exact 
solutions of the Schrodinger equations in bound states with non-
central potentials are the standard approach (Zhang & Guo, 2010), 
the path integral approach (Chetouani et al, 1987), the Nikiforov-
Uvarov method (Onyenegecha, 2022; Ikhdair, 2008; Antia et al, 
2010), the supersymmetric technique (Gonul & Zorba, 2000), 
amongst others. 
In this work, the methods we have adopted are purely theoretical 
approaches based on the quantum mechanical principles of the 
parametric Nikiforov-Uvarov method and the Density Matrix 
techniques. These methods are briefly described, as well as their 
specific use and applications in this work. 
 
Schrodinger Equation in Spherical Coordinates 
The time-independent Schrodinger equation describing the 
particle’s behaviour in a quantum system is given by eq. (1).  
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Substituting equation (2) into equation (1) produces the 
Schrodinger equation in spherical coordinates as  
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where ,,E and  are respectively the energy, reduced 

Planck constant, reduced mass, and wave function of the system. 
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(3), the radial part of the Schrodinger equation with the centrifugal 
term is obtained as 
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where n is the radial quantum number and l the orbital angular 
momentum quantum number. 
 
The Parametric Nikiforov- Uvarov Technique 
The Nikiforov–Uvarov (NU) method was applied in obtaining the 
solutions of hypergeometric second-order differential equations 
using special orthogonal functions (Nikiforov & Uvarov, 1988). Due 
to the fact that the conventional form of this method is very tedious, 
Tezcan & Sever, 2009 derived a simpler parametric form of the NU 
method. To use the parametric form of the NU method, we 
considered a general second-order differential equation of the 
form: 
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The energy and wave functions are obtained from  (6) and (7), 
respectively. 
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and nP is the orthogonal Jacobi polynomial defined as 
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The parametric form of the NU method was the method used in this 
work to determine the bound states of the Schrodinger equation for 
the Hua plus modified Eckart (HPME) potential. 
 
Density Matrix Method  
Once the energy eigenvalues and the associated eigenfunctions of 
the Schrödinger equation are obtained, the next step is to 
determine the optical properties of the system. In principle, the 
macroscopic optical properties of a system can be properly 
described based on the density matrix techniques of quantum 
mechanics, which is a combination of the theory of perturbation 
with the method of statistical mechanics. Using the density matrix 
approach, optical properties are investigated starting from the 
microscopic response of an individual molecule to the applied 
optical field (Gibbs, 1985; Smith, 1986). The approach has two 
advantages. Firstly, the mathematical step is clear, simple, and 
easy to follow. Secondly, both the expectation value of physical 
quantity for an individual molecule and the macroscopic average of 
the same quantity for an ensemble of a large number of molecules 
can be obtained (Gibbs, 1985; Smith, 1986). 
 
Theory of the Density Matrix Method  
For a medium with an applied optical field under consideration, and 
assuming that the Hamiltonian (energy) operator of a whole system 

is H  and that the density matrix operator that describes the 

physical state of the system is


, the time change of the density 
matrix obeys the following equation: 
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where  is Planck’s constant divided by 2 . For the conditions 
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of resonance, the effect of damping should be considered, and the 
above equation can be modified as 
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where the first term on the right-hand side of the equation is 
expressed by the Poisson brackets, the second term is the 
phenomenological damping effect.  
The total system Hamiltonian is composed of two parts, i.e., 
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where 0H
 is the Hamiltonian (unperturbed) of the medium in the 

absence of an applied field, and 
)(tH 

is the Hamiltonian of 
interaction between the medium and the applied optical field. In the 
case of perturbation, the density matrix operator can be expressed 
in series form: 
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Here, 
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no external field, and 
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is the rth  term that is assumed 
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. 
Substituting Equations (11) and (12) into Equation (10) gives 
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Here 
)(ri 

is the relaxation term, which represents the 

damping effect and   is a phenomenological constant due to 
electron-phonon interaction, electron collisions, etc. 

From Equation (14), it is clear that if 
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 and 
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known, the solutions from 
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 can be derived by 
applying a step-by-step method. Finally, the overall density matrix 

operator 


can be determined.  
For a system under the influence of an electromagnetic field of 

frequency 
w

such as  
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The time change of the matrix elements of the density operator, 


, is simply denoted as (Karabulut et al, 2006) 
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Equation (16) can be simplified by adopting the iterative procedure 

(Ahn & Chuang, 1987b; Khordad, 2013). 
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For a two-level system, the system polarization 
)(t

due to the 

electric field E
~

 can be written as  
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where, 


 andV are the electron density matrix and system 

volume, 0 is the free space permittivity, 
Tr

(trace) is the 
summation over the matrix diagonal elements. 
 
Numerical Results  
The results of this study were computed, and plots were made 
using MATLAB and Maple software. 
 
RESULTS AND DISCUSSION 
This section presents the solutions to the Schrodinger equation 
with Hua plus modified Eckart (HPME) potential. Ikot et al. (2015) 
gave the expression for HPME potential as 
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where the parameters  0V
, 1V

, 2V
, 3V

,   and 
q

are 
constants. 

 

Figure. 1. A plot of HPME potential as a function of r  for various 

values of  
 
Solutions to the Radial Form of the Schrodinger Equation 
To obtain the eigenvalues and associated eigenfunctions of the 
radial part of the Schrodinger equation, we substitute equation (20) 
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into equation (4) to have 

( )
0)(

1

)1(

)1(

)1(

4

1

12
22

2

32

2

2

2

2

2

1022

2

=












 +
−

−

+
−

−
−









−

−
−−+

−

−

−

−

−

−

rR
r

ll

qe

e
V

qe

eV

qe

e
VVE

m

dr

Rd
r

r

r

r

r

r















      
     
 (21) 
It is important to note here that the exact solution to equation (21) 

does not exist for 
0l

 as a result of the centrifugal barrier. 
However, approximate solutions exist. 
The first step in achieving the approximate solution to equation (21) 
starts with the use of the approximation scheme given by Greene 
& Aldrich (1976) as written below, 
 

)1(

41
2

2

2 r

r

qe

e

r 


−

−

−
=

,                           (22) 
 

 
Figure 2: Approximations to the centrifugal barrier 
Substituting Eq. (22) into Eq. (21) leads to 
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By making use of Equation (8), we obtain the constants, 
 
 
 
 
 
 

(24) 
 
Other parameters obtained from equations (8) are:     
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Substituting (24) and (25) into Equation (6) and carrying out some 
mathematical simplification gives the equation for the energy 
eigenvalues of the HPME potential as given below: 
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where, 
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Figure. 3 Variation of Energy of the HPME potential with screening parameter 
 
 

 
Figure 4 Variation of the energy with the barrier height  for various 
quantum number n and α = 0.02 
 

 
Figure  5 Variation of Linear (dashed line), third-order nonlinear 
(dotted line), and total absorption (solid line) coefficients incident 
photon energy for three different values of confinement barrier 
slope 
 
 

 
Figure 6 Variation of Linear (dashed line), third-order nonlinear 
(dotted line), and total absorption (solid line) coefficients with 
incident photon energy for three different values of barrier height 
V0 

 

 
Figure 7 Variation of Total absorption coefficient with photon 
energy for five different values of optical intensity I. 
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Figure 8 Variation of (a) the linear, (b) third-order nonlinear, and 
(c) total refractive index changes with incident photon energy for 
three different values of barrier slope γ. 
 

 
Figure 9 Variation of (a) the linear, (b) third-order nonlinear, and 
(c) total refractive index changes with photon energy for three 
different values of barrier height V0. 
 
 

 
Figure  10 Variation of total refractive index changes with incident 
photon energy for five different values of the incident optical 
intensity I. 
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