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ABSTRACT

The study presents results of the linear and non-linear optical
properties of GaAs quantum dots. The reported work aims to
provide new results of the quantum dot optical properties confined
in Hua plus modified Eckart (HPME) potential. To obtain analytical
expressions for the energy eigenvalues and the wave functions, we
solved the time-independent Schrédinger equation for the HPME
potential by using the parametric Nikiforov-Uvarov (NU) method.
Investigation of the linear, third-order nonlinear, and total
absorption coefficients and refractive index changes was done with
the help of the density matrix approach. The results showed that
the energy decreases in a linear manner as the potential
parameter, V0. Also, it is observed that as the barrier slope
increases, the peaks of the linear, third-order linear, and total
absorption coefficient tend to higher values of energy. Furthermore,
as the barrier slope increases, the change in refractive indices
increases, and their positions shift to higher energies. Additionally,
anincrease in the structure parameters and optical intensity greatly
influences the absorption coefficients and the refractive index
changes of the quantum dots.

Keywords: Optical Properties; Quantum dot; Schrddinger
equation; Nikiforov-Uvarov method; Density matrix method

INTRODUCTION

Low-dimensional structures (LDS) have been a central area of
research for many years. They are semiconductor materials, with
scale in one or two dimensions, such that they have electronic
properties that clearly differ from the same bulk material. These
properties are altered by the effects of quantum mechanics. All
over the world, increasing research time has been devoted to the
preparation, study, and application of low-dimensional structures.
Investigation into these structures has aggressively transformed
the science of condensed matter, particularly semiconductor-
related materials. The complex nature of LDS offers scientists and
engineers better insights and opportunities to design tunable,
generation photonic and electronic devices. The wizardry of
modern fabrication methods such as molecular beam epitaxy
(MBE) and metal-organic chemical vapour (MOCVD) deposition
has now led to the possibility of creating such low-dimensional
structures in reality and practice. These advanced techniques used
to grow high-quality epitaxial layers of semiconductors on
semiconductor crystal substrates are increasingly becoming very
crucial for the advancement of the semiconductor electronics
industry.

Currently, quantum wells (QW), quantum wires (QWR), and
quantum dots (QD) are the most commonly studied LDS. Quantum
dots (QD) are nanostructures that are quantum confined in 3
dimensions, which results in many peculiar and useful optical and
transport properties. Quantum Confinement is the spatial
confinement/entrapment of pairs of electrons and holes in one or

more dimensions within a material. Charge carrier confinement in
QDs happens in three directions. In low-temperature physics,
impurity influences many physical properties, such as optical and
transport phenomena. Due to the fact that semiconductors have a
band gap in their electronic band structure, quantum confinement
is observed more in semiconductors. Metals do not have a band
gap; therefore, quantum confinement is less obvious. To observe
quantum confinement, the dimensions have to be below 2 nm.
Since the beginning of the quantum theory, the study of quantum
confinement has been one of the most interesting subjects of
research. The research interest in the physical properties of
quantum confined structures like quantum wells (1- dimensional
confinement), quantum wires (2-dimensional confinement), and
QDs (3-dimensional confinement), has become more significant,
with the recent progress in semiconductor nanotechnology
(Theerapong et al., 2008; Tomoaki et al., 2008; Xiang-Hong et al.,
1998). Due to quantum size effects in these structures, atomic-like
discrete energy levels (sub-bands) are formed, in contrast to the
energy bands in bulk crystals.

A lot of attention has been drawn to semiconductor quantum dot
(QD) structures because of their peculiar physical properties and
their potential applications in micro and optoelectronic devices
(Ataser et al., 2018; Bhattacharya et al., 2004; Kang et al., 2015;
Karimkhani & Moravvej-Farsh, 2010; Rishinaramangalam et al.,
2015; Teleb et al., 2011), life sciences and biotechnology (Jorge et
al., 2006; Liang et al., 2006), thermoelectrics (Pennelli, 2015;
Cecchi et al, 2015). Semiconductor QDs have potential
applications in various optoelectronic devices, in biological
labeling, in light-emitting diodes (LEDs), detectors, etc. They also
have applications in solar cells as a result of their relatively higher
efficiency compared to bulk semiconductors (Ataser et al., 2018;
Ee et al., 2008; Jorge et al., 2006; Liang et al., 2006; Luque et al.,
2010). In zero-dimensional structures, the free carriers are
entrapped in a tiny region by a confinement potential that provides
the quantization of electronic energy states dependent on the size
of the dots. Recently, the optical properties of spherical quantum
dots have been reported theoretically (Mathe et al.2021; Onyeaju
& Onate, 2020; Onyenegecha, 2022; Tshipa, 2019). The optical
properties, such as index refraction, coefficient of absorption, and
absorption cross section, can be determined easily once the linear
and nonlinear susceptibilities of the QD are known. The nonlinear
contribution of the dielectric constant is enhanced by large electric
dipole matrix elements coupled with small energy differences
between subbands, so one expects that the intensity of light plays
an important part in the optical properties of the QDs. Hence, the
size of dots can influence the values of electronic energy
eigenvalues and their corresponding envelope functions.

MATERIALS AND METHODS
The Schrddinger equation is a fundamental wave equation in
physics; itis essential for understanding the nature and behavior of
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particles in quantum systems. One of the fundamental challenges
in quantum mechanics is to determine exact solutions to the
Schrddinger equation in bound states for potentials of considerable
interest. These solvable potentials are very vital to successfully
implement approximate methods in studying physical systems.
Different techniques applied by various authors to obtain the exact
solutions of the Schrodinger equations in bound states with non-
central potentials are the standard approach (Zhang & Guo, 2010),
the path integral approach (Chetouani et al, 1987), the Nikiforov-
Uvarov method (Onyenegecha, 2022; |khdair, 2008; Antia et al,
2010), the supersymmetric technique (Gonul & Zorba, 2000),
amongst others.

In this work, the methods we have adopted are purely theoretical
approaches based on the quantum mechanical principles of the
parametric Nikiforov-Uvarov method and the Density Matrix
techniques. These methods are briefly described, as well as their
specific use and applications in this work.

Schrodinger Equation in Spherical Coordinates
The time-independent Schrodinger equation describing the
particle’s behaviour in a quantum system is given by eq. (1).

——;’ V2 () +V(Dw(r) = Ew(r).
y7;
(1)

where V2 is the Laplacian in the form of spherical coordinates

, 10d8(,0 1 o(. & 1 @
Vis —— 1" —|+5——|sihb0_— |+—5———
r<or or r<sin @ 06 00) r°sin“ 0 dg

(2)

Substituting equation (2) into equation (1) produces the
Schrodinger equation in spherical coordinates as

2 A A A A2
7 %ﬂ[rzi}iz_iiisin 0$J+% W(r,0,0)+V (N (1,0,0)
2u|reor\ or r° sing 06 06) rosin®6op

= EY(r,0,¢)

(3)
where E, 7, ¢ and Y are respectively the energy, reduced
Planck constant, reduced mass, and wave function of the system.

R(r
Choosing W (r, 8, ¢) = Qt//nl (6,¢) as the solution to
r

(3), the radial part of the Schrodinger equation with the centrifugal
term is obtained as

d2rR (1) T2 (11
dr+{h—§(5m -V (n)- (; )}Rm(r):o,

(4)
where n is the radial quantum number and | the orbital angular
momentum quantum number.

The Parametric Nikiforov- Uvarov Technique
The Nikiforov—Uvarov (NU) method was applied in obtaining the
solutions of hypergeometric second-order differential equations

02(s) , =998 du(s) , ~G8* 6583 g
2 l—ans) ds 2 s
ds?  s(1-ags) s2(1-ags)
(5)
The energy and wave functions are obtained from (6) and (7),
respectively.
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where
L

1
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and Pn is the orthogonal Jacobi polynomial defined as

R{0) (o) = F(LQHZ) Fl(n,9+go+ n+l,9+1;1w] :
nIT(6 +1) 2

The parametric form of the NU method was the method used in this

work to determine the bound states of the Schrodinger equation for

the Hua plus modified Eckart (HPME) potential.

Density Matrix Method

Once the energy eigenvalues and the associated eigenfunctions of
the Schrodinger equation are obtained, the next step is to
determine the optical properties of the system. In principle, the
macroscopic optical properties of a system can be properly
described based on the density matrix techniques of quantum
mechanics, which is a combination of the theory of perturbation
with the method of statistical mechanics. Using the density matrix
approach, optical properties are investigated starting from the
microscopic response of an individual molecule to the applied
optical field (Gibbs, 1985; Smith, 1986). The approach has two
advantages. Firstly, the mathematical step is clear, simple, and
easy to follow. Secondly, both the expectation value of physical
quantity for an individual molecule and the macroscopic average of
the same quantity for an ensemble of a large number of molecules
can be obtained (Gibbs, 1985; Smith, 1986).

Theory of the Density Matrix Method
For a medium with an applied optical field under consideration, and
assuming that the Hamiltonian (energy) operator of a whole system

is H and that the density matrix operator that describes the

physical state of the system is P , the time change of the density
matrix obeys the following equation:

using special orthogonal functions (Nikiforov & Uvarov, 1988). Due d e, i
to the fact that the conventional form of this method is very tedious, —_ = —— [H p— pH ]
Tezcan & Sever, 2009 derived a simpler parametric form of the NU dt h

method. To use the parametric form of the NU method, we
considered a general second-order differential equation of the
form:

©)

where 7 is Planck’s constant divided by 27 . For the conditions
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of resonance, the effect of damping should be considered, and the (Ahn & Chuang, 1987b; Khordad, 2013).
abog eq(tgtion can be modified as ; p(t) — z p(n) (t)
ih'[;— = [H, p®O]+ in {d_p} "
t t relaxation , with
(n+
(10) apij 1 _ 1

where the first term on the right-hand side of the equation is
expressed by the Poisson brackets, the second term is the
phenomenological damping effect.

The total system Hamiltonian is composed of two parts, i.e.,

H = H, + H'(t)

. 1
= Z [ H,, p"y —inl, pt = =[ax, p™]. E(t
2= AT Ho, o™ —inDy o[, o™, EQ)
(18)
zation (D)
For a two-level system, the system polarization due to the
electric field E can be written as

) p(t) =&, x(@)Ee ™ + &,y (-w) E'e' = [Vler (oM)

where H 0 is the Hamiltonian (unperturbed) of the medium in the

absence of an applied field, and is the Hamiltonian of p V . _
interaction between the medium and the applied optical field. In the where, and ¥ are the electron density matrix and system
case of perturbation, the density matrix operator can be expressed & o Tr )
in series form: volume, “Ois the free space permittivity, (trace) is the
() ) @) " summation over the matrix diagonal elements.
pt) = p7 + PP )+ )+ +p"(t)
(12) Numerical Results

(0) The results of this study were computed, and plots were made

Here, P is the initial value of the density matrix when there is using MATLAB and Maple software.
el and 2° (D e Tth -
no external field, and is the term that is assumed RESULTS AND DISCUSSION
H'(t) This section presents the solutions to the Schrodinger equation

to be proportional to the power of .

Substituting Equations (11) and (12) into Equation (10) gives with Hua plus modified Eckart (HPME) potential. Ikot et al. (2015)

gave the expression for HPME potential as

®
in 32 _ [H,,p®]+[H" p©] + inrp® 1-e% Y’ 4e7 1+e
dt V(r) =V, +V, =y 2 ot 3 o
(13) 1-qe (1-ge™) 1-e
9, 0], 0] -
in = [Hp, p" | +|H", p" | +inlp® V
dt 0 where the parameters O Vl, VZ, V3, & and q are
(14) constants.
i (r
Here inT'p is the relaxation term, which represents the M.
damping effect and I' sa phenomenological constant due to
electron-phonon interaction, electron collisions, etc. w
(0) ' g
From Equation (14), it is clear that if P ang H'(t) are
® (" 5
known, the solutions from P 1o P can be derived by Vi)
applying a step-by-step method. Finally, the overall density matrix 0]
operator P can be determined.
For a system under the influence of an electromagnetic field of alM
frequency w such as
E(t) = E,cos(wt) = Ee™ + Ee™
(19)
The time change of the matrix elements of the density operator, [azi==w-2—a-i—u-
P is simply denoted as (Karabulut et al, 2006) Figure. 1. A plot of HPME potential as a function of I for various
0 1 (04
Ep = (Ej [Ho—axE (1), p]-T (0 -p) values of
|

' Solutions to the Radial Form of the Schrodinger Equation
To obtain the eigenvalues and associated eigenfunctions of the
radial part of the Schrodinger equation, we substitute equation (20)

(16)
Equation (16) can be simplified by adopting the iterative procedure

Hybrid Optical Properties Of Gaas Quantum Dots 1644


https://dx.doi.org/10.4314/swj.v20i4.44
http://www.scienceworldjournal.org/

Science World Journal Vol. 20(No 4) 2025
www.scienceworldjournal.org

ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)
Published by Faculty of Science, Kaduna State University

into equation (4) to have
dR Zim{ v [1—e’z“' ]2 e (et 1(1+1)

R(r)=0

dr? + 1 1_qefzar - (1_qefzar) % (1_qe72ar) r2

(21)
It is important to note here that the exact solution to equation (21)

does not exist for # 0 as a result of the centrifugal barrier.
However, approximate solutions exist.

The first step in achieving the approximate solution to equation (21)
starts with the use of the approximation scheme given by Greene
& Aldrich (1976) as written below,

2 —
1 Adae™
2 T —2ar
o @d-ge) @)
500
— 1
ol L @ =001
------ a =002
a=0.05
00f e a=0.10
a = 0.50
200
100
%.U 0.2 ] 0.4 0.6 0.8 1.0
r(ap)
Figure 2: Approximations to the centrifugal barrier
Substituting Eq. (22) into Eq. (21) leads to
o +2*T{E‘Vn —Vl[ e J STy ) e D) -
dr n 1-ge ™ (-ge Zar) (1-ge an) (1-ge an)z

(23)
By making use of Equation (8), we obtain the constants,

https://dx.doi.org/10.4314/swj.v20i4.44

o, = o, =oay =1
1
= 0, - _=
o, g >
oy = — + &7+ V12 7\/227 V32
4 Ao ©q o q A4cr©q
o, :7[252+5V127 \/22 7V3(1:q)7 /’Lj
a®q dcx=q q
oy = £° + Vi +2V3.
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(24)

Other parameters obtained from equations (8) are:
1 _ M+, v 4

4 4a? 4a’q q

a, =1+2,]e" + Vid +2V3
da

an:2+z[\/%+m+ v, &\/Mj

ay =

4a? 4a’q q 4a?

(25)
Substituting (24) and (25) into Equation (6) and carrying out some
mathematical simplification gives the equation for the energy
eigenvalues of the HPME potential as given below:

E =V,
4m m 2(n+ o)
(26)
where,
11 V@2, v, 2

24 42®  4a’q q
vV -|-V3 _Vl _|_V1q _ (\/3+V1q)

2

0=
a’q  da’q  2a° 4o
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