Science World Journal Vol. 20(No 4) 2025
www.scienceworldjournal.org

ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)
Published by Faculty of Science, Kaduna State University

https://dx.doi.org/10.4314/swj.v20i4.46

EXISTENCE AND

SMOOTHNESS OF

NAVIER-STOKES

SOLUTIONS: A COMPLETE MATHEMATICAL PROOF

"Gado Nehemiah Umar, 2Desmond Bala Bisandu

"Department of Mechanical Engineering, Ahmadu Bello University, Zaria
2Centre for Computational Engineering Sciences, Cranfield University, MK43 OAL

*Corresponding Author Email Address: omar1gado@gmail.com

ABSTRACT

In the continuum of fluid, average properties, pressure, density,
velocity, and temperature, are evaluated over a small volume with
a large number of particles of fluid. These properties vary
continuously in space and time. Mathematical fluid dynamic models
of these properties give rise to the continuity equation, momentum
equation, energy equation, Euler's equation, Cauchy’s equation of
fluid motion, and the Navier-Stokes equations. These known
existing equations add meaning to understanding the mechanics of
fluid in science and engineering, geophysics, climate science, and
computational fluid dynamics (CFD). Despite their long history, the
analytical structure of the equations remains partially understood;
famously, the Clay Mathematics Institute lists the existence of
smoothness of solutions in three dimensions as one of the
Millennium Prize Problems. However, to solve the Navier-Stokes

equations, we must dig down to the very minimum force (F—>) by

which an infinitesimal fluid particle (Quantum molecule) moves
around its volume mass under gravity, in alignment with quantum
theory. In this paper ,a solution to the Navier-Stokes equation on
R4:d > 3, is put forward. A novel analytical framework for solving
the Navier-Stokes equations by introducing the concept of a
minimum force - the smallest quantifiable force acting on a
quantum fluid particle under gravity. The analysis quantize the
fundamental forces (momentum, pressure, and shear) acting on an
infinitesimal fluid element, leading to discrete quantum numbers
that characterize each force (ng, np,, n;). These quantum values
offer new solutions for both linear and non-linear terms of the
Navier-Stokes equations on a torus. A general quantum number
emerges (n), determining fluid smoothness or turbulence: positive
values correspond to smooth flow, while negative values represent
chaotic outbursts and vorticity. The resulting solutions provide
insight into local and convective accelerations, vortex formation,
and turbulence behaviour, revealing a natural logarithmic structure
underpinning vortex dynamics. This approach merges classical
fluid dynamics with quantum theory and relativity, offering new
pathways for addressing one of the millennium problems-the
existence and smoothness of Navier-Stokes equations.

Keywords: Navier-Stokes Equations, quantum numbers,
minimum force, smoothness, outburst, convective acceleration

INTRODUCTION —
In the 18 century, the beautiful mathematical mind of Leonhard o . -
Euler, a Swiss, described the flow of frictionless and S

incompressible fluids. Subsequently, friction (viscosity) was
introduced for more complicated viscous fluids in 1821 by the
French Engineer Claude-Louis Navier. Decades later, the British
Mathematical Physicist Sir George Gabriel Stokes improved the
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description to the famous Navier-Stokes equation given below.
Considering an infinitesimal differential element in a flow field,

Figure 1

Fluid Molecule (infinitesimal differential element)

From Newton’s Second Law of Motion, the net force (3 f) acting
on the element = mass X acceleration.
= ) f =may in x-direction

(1)
ou

ou ou ou
ax—at+uax+vay+waz

(2)
S L Substantial derivative
Dt

-2 - Du
=)f= P [mv] = mo- = p.dx.dy.dz. )
= p.dx.dy. dz.% =p.dx.dy.dz.a, =p (6—1; +

ou ou
Vo, +w E) dxdydz (3)
Also, Y. fx = X, Body forces + Y, Surface forces

@)
Zf=2mg+ZPA
max=mgx+ZPA

p.ayx.dx.dy.dz = pg,dx.dy.dz + ), PA

()
Z PA z normal forces + z Shearing forces

ou
u5+

o = [txy Oyy Tzy

Txz Tyz Ozz
In the stress tensor, there are 9 components of the normal and
shear forces.
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Due to symmetry, T,y = Tyx, Tyz = Tzp aNd Tyy = T4y, 88
such, there are 6 components.
= Y PA = 0y (x + dx)dydz + 7, (y + dy)dxdz +

T,2(z + dz)dxdy — 0., (x)dydz — 7, (y)dxdz —
T, (2)dxdy
Uxx(x"'dx)_Uxx(x)
= Y= E =pgxt———— —t
Tyx(Y+dy) -7y (¥) +sz(z+dz) T2 (2)
dy dz
= — adxx % atj
P Dt =Pgxt dy 0z
(6)
Oxx (X +dX) = 05x (%)
dx
lim Tyx (Y +dy)—Tyx(¥)
dx—-0 dy
dy-0 Tox(2+d2)—T5x(2)
dz-0 72
From constitutive equations,
du du dv
Oxx = —P + Zua, Tyx = Tyx = U <@ + 6x>
v 617
Oyy = —P + Zua—, Tyy = Tgy = ( )
ow ow au
zz:_P+2.uEr Tox = Txz = U ( )
Substituting, the constitutive equations into (6)
Du 6P+2 62u+ 62u+ 2w N a%w
Ppr =PI~ Tz TH dy? # dxdy K oxaz
N 0%u
Ko
B
Du oP N %u N o%u N 0%u N %u
Pper = P9~ 9 THGx2 “ayz Koz T Hoxz
N 2%v N o%*w
# 0x0y K oxaz
B
Du P+ 0%u 62u+62u
Ppe =PI T o TH|x2 T 5y2 T 522
N 0%u N %v N a2
K\ ax2 0xdy 0x0z
62u+ %v N %w “o
H\ox2 0xdy 6x62 B
— Du _
==phr=pg. =S Hulii T
_ ou 0u apP 9%u
= =p E+u$+ —+w— =p9x 5T U|3E T
o%u | 9%u
g g (7)
aP
+Z] ]6 = fi(x t)_a_xi+VAui (8)
ap E =—-VP+ uVZu ( Navier-Stokes equation in Vector
form) 9)

Where, f;(x,t) = 0 (given external force due to gravity, electro-
magnetic field).

p % = Momentum force (Substantial Derivative)

VP = Pressure Force (Pressure divergence)

uV?u = Shear force.

Leray (1934) introduced the concept of weak solutions, laying the
foundation of modern mathematical fluid dynamics. While global
weak solutions exist, their regularity remains unresolved.
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Subsequent work by Ladyzhenskaya (1959), Temam (1977), Folas
and collaborators (1990s), has clarified conditions for local
existence, uniqueness, and regularity. However, the full problem
remains open. Several simplified flow configurations yield
analytical or semi-analytical solutions: laminar pipe flow (Hagen-
Poiseuille), Couette and Taylor-Couette flows, and boundary-layer
approximations. These benchmarks play a critical role in validating
computational and experimental studies.

Contemporary research direction emphasizes: Machine learning-
enhanced solvers, Data-driven turbulence closures, High-fidelity
DNS at unprecedented Reynolds numbers, Quantum algorithms
for PDE solvers, and regular analysis using harmonic analysis and
functional spaces (Besov, Lebesgue, Sobolev). These trends
reflect efforts to address the computational and theoretical
limitations of classical methods.

Exact solutions (analytical solutions) have proven intractable due
to the fluid flow's chaotic (turbulent) nature. Except for an
incompressible, laminar, and steady flow, more realistic, difficult
fluid flow problems are solved by interpolation in numerical analysis
(Computational Fluid Dynamics). Accumulation of uncertainties
(errors) over time is a limitation in numerical analysis; turbulence
cannot be predicted, and weather conditions for the longer term.
Rapid change in velocity (u) pressure gradient and temperature in
the continuum of fluids, seldom use the algorithm of turbulence and
the exact solutions to the convective and local accelerations in the
non-linear term of the equation for all kinds of fluid. An incomplete
understanding of its complexity has led to minor accidents and
plane crashes in the aviation industry and has negatively impacted
the ecosystem. Exact (analytical) solutions to the Navier-Stokes
equation will revolutionize the aviation industry, weather prediction,
quantum computing, medicine, and the maritime. The world will be
a safer place for mankind, and extraterrestrial travel will greatly
improve.

The Navier-Stokes equations remain a central topic in theoretical
and applied physics. While substantial progress has been
achieved-ranging from mathematical analysis to turbulence
modeling and computational simulation. Nevertheless, the core
challenges, particularly understanding turbulence and proven
global well-posedness, persist.

The existential of smoothness of the Navier-Stokes equation on the
torus is one of the Millennium Problems. As such it has become
one of the most studied problems in the study of partial differential
equations. In this paper, a combination of the minimum force and
quantum numbers from ‘Quantum theory’ were used to describe
the forces per volume acting on a quantum fluid molecule. This led
to a new general simplified equation and solution to the Navier-
Stokes existence. Hence, smoothness and existential analysis.

Preliminaries
Quantum mechanics is the theory of the infinitesimal. The forces in
the Navier-Stokes equation were taken as multiples of a minimum

force (F—>) i.e., the Navier-Stokes equation is a function of a set of

quantum numbers, N = {(n,ng,n,,n;): Vn,ngn,n, €
Z} n, is the general quantum number for the Navier-Stokes
equation, and ng, n,,, n. are quantum numbers for the momentum
force, pressure force, and the shear force.

Lemma 1: Let the force per volume (Q) in the Navier-Stokes
equation vary directly with its quantum number ng, and let
fing = Q be a function so that;, f(ng) =0 if ng >0,
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f(ng) =0ifng =0, f(ng) < 0ifng < 0 and fi[nQ — Cq]
0
be a solution to the PDEs for every ng € Z and C, € R..

Proof: Let Fy = Fi (inverse of the minimum force),
Qang
= 0= knﬂ,
Where, k is a constant of proportionality called the minimum force

(Fn)-
1 1

no __1__ 1 _ —
=>t=r= Fa Fy = constant (10)
> Q = f(ng), linear function
’ _ A0 _ f(ng+Ang)—f(ng) _

= flng) = Ang . Ang =

. dQ _ f(ngt+dng)—f(ng) _
o= g = g m
> Fp.dng = dQ (1)
Integrating,

me.dTLQ = fd.Q

1

= [dng = afdﬂ
= ng = FO' Q+ CQ
$Q=FLO[HQ—CQ] (12)

Minimum Force

Mechanical drivers of fluids are injectors of integer multiples n =
0,1,2,3, ... (quantum numbers) to an already existing minimum
force (F,,) due to gravity, responsible for the motion of a molecule
of fluid around its volume mass (M). Mechanical drivers enlarge
this minimum force and cause the flow or motion in their direction.

Lemma 2: Let the mass volume ratio (M) of the aforementioned
infinitesimal ~ (differential fluid element) quantum mass (M,),

occupying an infinitesimal volume (V) be taken as unity

(constant). So that; M = Yo o Ma o M, if—Mp < Mg < My
Vo My MgV,

and =V <V, <Vx (—Mp<O0andMy>0,and -V, <

0 and V. > 0).

Proof: LetMy =V, =>p =1

3D plotofMvsM_andV
q q

MvsV
a
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Mg _
= k (13)
Mq
= —_——= k
e p 7
“ Mg =kV; & Mg.AM = kV,. AM
Integrating,
M M
J- My.AM = kV,.AM
M, -M,
My My
> | MgdM= f kV,.dM
My —M,
As, AM - 0

= Mq(Moc - My) = qu(Moc + M)
My _ Mq+qu _ Mq+qu

>M=— =
My Mg—pVy  Mg—kV,
=M = M= _ Matly (14)
My  Mg-V,
Conversely,
Mg.AV = pV,. AV
Integrating
Vi Vix
= Mq.Asz pVy. AV
Vo Vo
As, AV - 0

Vi Vi
= Mq.dV=f pVy.dv

Vo )
= Mq(Vo( Vo) = qu(er + Vo)
Vo _ Mgt+pVq _ Mg+kVg (15)
Vo Mg—pVq Mg—kVg

_ Vo _ MgtV _ 1 _
sv=p=g o lh=k=1
'_'sz_‘x:&:M(ﬁVq

Vo My Mg-V,

M, is a dimensionless mass volume ratio.
Where, M, is the quantum mass of a fluid molecule
V. is the volume occupied by the quantum mass (quantum

volume).

S>v=

(16)

Figure 2 Graph of M/V, and M/M,, in 2D and 3D

From Figure 2, at quantum levels, M varies with mass defect and
shrinking volume.

Lemma 3: The minimum force, ‘F,,” is proportional to the mass
volume ratio ‘M’ under gravity. This is the minimum weight per

%1028 : ; ™

molecular mass volume of a fluid particle.
Proof:
=>F,aM
= F,, = KM, where K is a constant, K=g,
M is the dimensionless mass volume ratio for the fluid and g is the
acceleration due to gravity.
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Mg +V,

~E =Mg= [M] 17

m=Mg=n=.|9 (17)
Mgty [Mg+v,

= En(x,y,2) =i [Mq_vq]g(x,y,z) +J [Mq—Vq ] Ixyz) t
M +V
[ ]g(xyz)

> F (x y,z) = iEy,, +jEny, + kb, (18)

The minimum force (F,,) is constant for a fluid.
Lemma 4: Let uV?u = n.F,, where the shearing force is a
multiple of the minimum force (F,,) due to the function of n,
(shearing force quantum number), vV n, € Z. So that integrating
both sides simultaneously will yield the exact solution of u and its
rate of change in R% = {(xy, x5, ..., x4) € R%:d > 0}.
Proof: Let, E, = X%, E,(x;). The minimum force, F, isa
constant for a particular fluid.
uviu = n.E,
a 2w d
= #Zi=1 ax? =ng Zi:lFm(Xi)
20
uXxd, aax? =0,n,=o0
a 9w
B Xi=1 ax?
a 9w
#Zi:l@ >0,n, >0

u;  n
= Z? 1axizl: TZ =1 Fn (%)

ST =E, (19)

6x2 12

62ul
J f =5 fo S
re Jpa \ & rd Jpa

ff 62 az . +au ox. d ;
R4 JRd 6x1 6x22 axé .0X1.0Xy ...0Xg4

n
= —Tf J Ep.0%1.0%, ...0x4
R4 JRd

<0

Su= n’:mu(xl X8 L x
(20)6 (@-1)
ou [(d-1)n;Fp d-2 ,.d-1 d-1Y)]
o p u(xf =2, x84, ., x4
ou @-Dn:Fp d-1 ,d-2 d-1
o u’ u(x1 y X2 Ty Xg )
> |= ’
i d-Dn:Fp a—.1 d-1 da-2
: x[0, 0] (21)

Turbulence and Vorticity in Fluid

Sudden Change in the continuum of fluid flow in the atmosphere is
due to a differential in Pressure (P), thermal energy absorption (Y)
and infrared radiation absorption by the atmospheric greenhouse
(¢). This leads to gusty winds, squalls, turbulence, and the
torsioning effects of fluid molecules into spins (vortex) in the
rational distance of a dimension in the fluid system. The thermal
energy (Y) absorption catalyzes the dissolution of air molecules (M)
on a land sketch (dimension). Change in the absorption rates from
radiant energy is accompanied by sound and a pressure difference,
which leads to the inertial culmination of the time-dependent and
convection acceleration, causing cracks (vortex) in mechanical
fluids.

https://dx.doi.org/10.4314/swj.v20i4.46

Thermal Energy

Proposition 5: The time-dependent temperature y varies directly
as the cube root of the weather condition to the power four (w*)
and the cube root of the frequency to the power two (h?) of the
sound produced at the formation of a vortex in turbulence.

Proof:

Mathematically,

y = [w*h?Js (22)
4 2
Where, y is the time-dependent temperature in [°C/s]3.s73
w, is the weather condition in °C/s and
h, frequency of the sound produced at turbulence and the

simultaneous formation of vortices, in Hertz (s)
P ]/3 = w*h?

>y =wt G)z (23)

- =l e

4
eyd= [Mic] 2 (24)
Where, v is the velocity of sound produced at turbulence,
A, is the wavelength of sound,
t, is the time taken,
T, is the temperature,
P, is the thermal power,
M, percentage mass/molecule of air within the dimension
C, specific heat capacity of air.

Pressure and Radiant Flux Variable

Proposition 6: The turbulent causing agent a is directly
proportional to the product of the cube root of the sudden pressure
p and the radiant flux ¢ within the dimension.

Proof:

Mathematically,

a=dop (25)
a = ¢e,/1% (26)

Where, a is the turbulent agent,

Qe ¢ is the radiant flux in w/Hz (indicative of the time of crack or
formation of vortex)

@e 1, Is the radiant flux in w/m (indicative of the depth of the crack
or vortex)

o ad=p.¢3 (27)

Ratlonal Length of the Top Air Layer

Figure 3.
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Proposition 7: The rational length “a” of the top air layer is the
volume of the horizontal area covered by the crack or vortex at
turbulence.

Sa=L Xnar? (28)

where L is the depth of the crack/vortex at the outburst

T, is the horizontal radius of the vortex or crack at the top layer.

Rational distance of the dimension

Proposition 8: The rational distance is the vertical area of the
radius of the depth of the crack.

Given as;

onr? (29)

1y, is the vertical radius of the depth of turbulence

0, is the angle of spin in rad.

The logarithmic Equation for Vorticity turbulence.

Proposition 9: The pressure Radiant («) varies directly as the
Thermal energy (y) and the cube root of the Rational distance of
the dimension (8mr2). It also varies inversely as the cube root of

the rational length "a" (L x 7r?) and the Thermal energy is
exponentially raised to the product of gravity(g) and vertical radius
(7).
Proof:

Mathematically,

a « y(0mr? )3

1
a X T
(ayF)?
y(91‘[r )3
(uy‘*’)3
sa=k “9’"”’3 (30)
(uvﬁ)3

=>a X

B= grv

k=d?

g= 1
~10”

where g is acceleration due to gravity,

K'is a constant of proportionality,

d is the densal quantity

p, is the density of the fluid.

_ y3dOnr?

=af (31)

Re-arranging

dy*  a?

ayf ~ Omr?

Taking the Natural logarithm of both sides

(3-p)ny =Inad —ln[ - Z]

aonry
2
B-=Bny=Ina®-1In [dL;:E]
(32)
(3 — B)Iny, is the thermal or mechanical energy at turbulence
In a3, is the pressure energy at turbulence

In [d o ] is the dimension (expanse/depth|) of turbulence/vortex

o ad

form

Vorticity Transport Equation.

Vorticity measures how fluid particles spin in a particular pointin a
continuum, due to torsional forces from angular momentum.
Analyzing spins mathematically is done by taking the Curl ‘@’ of

https://dx.doi.org/10.4314/swj.v20i4.46

the velocity vector ‘u(7)" in 3 dimensions:

V x u, > 9 0 0
w' = w' = |— — —
uJZ, dx dy 0z

Uy Uy Uy,
(P O (B ) (O
l(ay az) ](6)( 6z)+k(ax By)
(33)
-~ The components of rotation are;
_ (0u, Ouy
2 =\y "oz
B (auz aux)
O =\ox "z
_(Ouy  Ouy
@z =\ ox dy

The Curl of the Navier-Stokes equation gives the vorticity transport
equation'

V x +Zu’0 = f;(x, t)——+vAuL

6wk 6wk 6uk 6 Wy

= —= — = W — X X
ac W dx; j ax; 6x]6x + Vp VP +V

1

= f. x’t

Lfie,0)

The angular momentum of the rotation is the substantial derivative
of the Curl

. Dwk auk 2wy i l .
Y %%, yaxjaxj+szpxVP+V><pﬁ(x,t)
(34)

Lemma 10: Let w = f(x,y,z,t), be a function of space and
time. Where 'r" is the radius of rotation of curl such that (0 < r <

coand 0 < I;—’f < o0), the direction and magnitude of the

resultant rotation are; ||@|| and 0.
Proof:

Figure 4
The diagram above shows the dimensional vectors of Curl @, with
the resultant rotation at a radius 7.
w=f(x,y,21)
Change in vorticity (curl)
0w ow 0w 0w
= 0w = 6XE+6yE+6Za—Z+6tE
Time rate of change in vorticity (curl)
fw _6x 0w [ 8y 0w | 6z 0w | 6t 0w
5t ot ox | ot ay ' ot oz @ &t at
dw _Ox 0w Oy 0w 0z dw  Ow
= —t—=—+—
dt T ot ox | ot 6y at oz = ot
Asét - 0
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dw 6w+ 6w+ 6w+6w

=5 — = e —_— _ _
dac - “ox " Vay " Vaz Tar
o _dw _( 0w 0w 0w
ot  at {Bx+vay+ 62}
(35)

Figure 5

The angular acceleration 'a’ for a fluid particle spinning,
dw @ —w

aA=—=
dt tl - to
Linear velocity = radius of rotation ‘r ' X @
v
>w=-
do o —wy 1 v+v,
aA=—= =
dt  tj—ty, 71 t;—tg
sa=-.a
Where a is linear acceleration
ow a ow ow ow
E‘?_{”§+”E+WE}

Recall from (2)

_Ou + ou + ou + ou

Tt T ax T Vey "V az

ow 1 {au ou ou 6u}

Ay

TR A U PR TR

{ 6w+ lw 6W}

Yox TPy Vs
0w _ou (10w 0w\ (ou_ow) 10w
E T rot (r ox 6x) (r ay 6y) (r 0z
ow
) (36)

Substituting equation (37) into (34) the substantial derivative of
1Dw, . . .

curl, o+ dives the vorticity transport equation as;

Dw_l{au_l_ 6u+ 6u+ 6u}_( Tyu+ ov?

Dt rlac " “ox Uay Wz = @ U vV@

1 {6u du du au}

Flac T e TV Tz

In vector form;
a _ —
g{a—ltl + uVu} = (@.V)u+ uV?w
(37)
Where r is the radius covered by the vortex.

The magnitude and direction of curl on the resultant direction of
rotation, from the diagram above is given by:

https://dx.doi.org/10.4314/swj.v20i4.46

2 = 2 — 2| — [ e - 2e|* |2 — 2
ay 0z ox 0z ox ay
(38)
qug_Ouy
— 9. (2
O = tan™ ! {5
ox oz
(39)

The direction of Curl in 3-dimensions from the diagram above;

(8uz auy)
-1))0y  9z)

6; = cos
' el
G=-%5)
6; = cos~1{22x__02
/ lwll
("’ﬁ — 2y
— ox ay
0, = cos™{—-—2
|

The Natural Logarithm of the Vorticity Transport Equation.
Formation of vortices (spins) in a turbulent flow of fluid follows a
mathematical rhythm as shown below;

From (38)

efou  avul = (@.V 2
r{at+uVu}— (@.Vu+ uVw

Where r is the radius covered by the vortex.
1 1

1__ Y (=¥ 2
=>- p{%mw}{(w' Vu + uVw}
_ P ou |
= r= {(@Vu+ uview} {6t + uVu}
(40)

r = 13, radius of vortex, from (28)
Substituting (40) into (32) to give the Natural logarithmic function of
vorticity transport equation
2
L {a—u+ﬁVu}] L

(@ Vu+ uviwilat

_ _ 3 _ {{
= B—=Blny =Ina’—In 2072

(41)
Where, (3 — B)Iny, is the thermal or mechanical energy at
turbulence
In a3, is the pressure energy at turbulence
ou, _, z
{{(w.V)ui uVZw]{E*‘uvu}} L
n aor?

, contains the Angular momentum,

vortex stretching term, rotational effect, and dimension
(expanse/depth|) of the vortex formed

asdor?

2
P ou
{{(m.V)u+ uvzm]{E"—uvu}} L

2
\vA 2
=y = a3dor2 {Wﬂ}
p{;+uVu}L

=yG-A =

2 _
= yB-Ap {3—1: + ﬁVu} = 3dor{(w. Vu + uV?w}?
(42)

Wavelength and Frequency of Vortex Energy.

The pressure energy stimulating the molecules of a fluid into
turbulent spins during the formation of vortices and cracks
simultaneously travels as a waveform, using the fluid molecules as
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a material medium.
Proposition 11: The wavelength (w) varies directly as the product

of pressure (P) and time (T), and inversely as the square of the
volume (v) occupied by the fluid molecules.

Proof:
PT
wa W
PT 1 . . 8. -1
= k.ﬁ, —.,mis the mass per units kgm™°s

PT
W =

mv?2
(43)

Proposition 12: The momentum of the force causing the
vortex/crack is equal to the imparted momentum on the fluid
molecules.

Proof:

The momentum of the causative force = pressure X Time X
Area = PTnr?

The  imparted  momentum = mass per units X
volume cube = mV3

= PTnr? =mp3

= PTar? —mV3 =0

& PTar? —mV3=¢

(44)

Proposition 13: The minimum volume (v) occupied by the air
molecules is directly proportional to the wavelength (w) of the
vibration of the molecules.

Proof:

>vaw

= v = kw, where k is the unit area (A)
>v=Aw

Av 1m?
Sv=w—.
v WAv m

= vAv = wAv

Integrating
Vg Vg
f vAv = f wAv
-V )
Yo _ WAV
Vo T w-v
sV = :—“ = ::—“’ is the dimensionless wavelength-volume ratio.
()
(45)
The minimum pressure required to initiate the motion causing the
cracks;
P = ’:TV, y = Specific weight, V' = wavelength-volume ratio
=p= y wHv
Subst|tut|ng Pfrom (46)
>mV3 =Ty W—W
>mV3[w — ] Ty[w + v]
Substituting w from (45)
KPT , _ kyT
T—Kmv =7[W+U]
é aP, (Boyle's law)

o= gK = 1 (surface tension of fluid)

oyT
= P2T — gmv? =%[w+v]
= P?T —omv?® = P*Tf[w + v]

https://dx.doi.org/10.4314/swj.v20i4.46

mv?o

[T — fT?(w + v)]

mv2o
2P = \I [T—fT2(w+v)]
(46)
f, is the frequency of vortex energy.
Substituting (46) into (42) to give the Natural logarithmic function of
the vorticity transport equation

Recall, from (27)

= PpZ=

ad =p.¢3,
= B =Py =In[p.¢’] -
2
{[(w.V)ui uv2 ]{2t+uvu}] L
In
aor?
2
> @=Alny =In ["’3 [}”Tn]

2
P U,
{{(m.v)u+ qum]{6t+uvu}} L
In 5
aor;

(47)

Where, (3 — B)Iny, is the thermal or mechanical energy of the
vortex formed at turbulence

Inln [(],‘)3
the vortex formed at turbulence

2
P U,
{{(m.v)u+ qum]{6t+uvu}} L
dor?

mv2o

m] is the pressure/vibrational energy of

In

, contains the Angular momentum,

vortex stretching term, rotational effect, and dimension
(expanse/depth|) of the vortex formed

3 mvo 2
[¢ N [T-fTZ(w+v)]]d9T”

2
P ou .
{{(m.V)u+ uVZm]{6_t+uvu}] L

2
(3-8) _ mv2o (@ V)u+ uv?ew
=Y [ \I T—fT2(w+v)] ] dor; {{ (St avulL

yG- ﬂ)Lp{ +uVu}2 =

=yG-A =

[¢)3 [T—fm”[':ﬁ] dHrvz{(ar. V)u + quw}Z

Navier-Stokes Equation as a function of quantum integrals.
The Navier-Stokes equation can be expressed as functions of
quantum numbers, as stated earlier from “Lemma 1”. As a result,
the following assumption is taken;

The momentum force, pressure force, and shear forces are
multiples of a minimum force acting on a quantum fluid molecule
(differential element) moving around its volume mass under gravity.
The multiples are integral values (quantum numbers); ng (for
momentum force), np (pressure force) and n, (Shear force).
Where, ng, np, n; = 0,1,2,3,.

= 1{au‘+21 Ja__f’( t)—%+vAui}
(49)
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o é{pg—’t‘ = VP + uv?u }
& F, {p% =-VP+ quu}
(50)

o ng = —np +n;
(51)

Where, F,, is the reciprocal of the quantum force: Fy, = Fi

m

ng, is the momentum force quantum number

np, is the pressure force quantum number, and

n;, is the shear force quantum number.

The momentum force is a multiple of the minimum force, given as
the product of the minimum force F,, and the momentum quantum
number ng.

= p%=menB
(52)
S 2 n

Fm Poe =18

Du _
:Foxpa—ng

The graph of ng /p Z;—’; is linear.

ng vs rho.Du/Dt

1000
900
800
700
600
c 500
400 |
300
200

100 -

0 L L L L L L L L '
0 100 200 300 400 500 600 700 800 900 1000

rho.Du/Dt
Figure 6 Graph of nB/p%

> % = F,, the slope of the graph is the quantum force (Fj).
pe

Dt D
= Ang = FylAp D—I:
Integrating,

Du
fATlB = fFOApﬁ

=4

Du
J‘dnB = fFodpE

As, Apg—l: —0andAng - 0

Du
=>ng = FO'pE-l-CB’

= Y 2—1; = Flo[ns - Cgl
(53)

Similarly;

For pressure force,

The graph of np /VP is linear.

Existence And Smoothness Of Navier—-Stokes Solutions:

n_vs VP
P

-1000 . . : ; . .

-1000 -900 -800 -700 -600 -500 -400
P

Figure7 Graph of n,/VP

= —n, = —F.VP + Cp

=

(54)
Also,
Shearing force,
The graph of n,/uV?u is linear.
n sy Vu
1000 T T T

-300 -200 -100 0

—VP = =1 [np + Cp]
Fo

900

800

700

600

< 500 -

400

300

200

100 [

0 L L L L L L

L L L

0 100 200 300 400 500 600
uvzu

Figure 8 Graph of n,/uVZu

=>n, = Fp.uV2u + C,
= uViu = Fio[nf =Gl
=

(55)

700 800 900 1000

2y = L [ —
Vu—uFo[nT C.]

Substituting these values from (53), (54) and (55) into equation (9)
oo [ng = Cal = = np + Cpl + - [ = €

(56)

Also, from (9):

Du [-vP Viul =0

Py~ [ZVP A+ uviu] =

S L
AT uvtu] =

=>ng—[-np+n]=0

ong—[-np+n]=n

(57)

where “n” is the general quantum number for the N-S equation.

An

= F,, where F, is the slope of the graph
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Integrating,
> [An= fFOAp% — [~VP + uV?u], let pf)—’t‘— [-VP +
uviul =
= fAn = fFoNP
>n=F¢+c

1
= @ = F—U(n —c)
(58)

ﬁp%— [-VP + uV?u] = —(n— )

= Equation (56)

< FL[ B_CB]_{_Fio[nP+CP]+Fio[nt_C‘r]}=
—(n —c) (59)

New form of the N-S equation.

For a fluid system at equilibrium;
p% — [-VP + uV?u] = 0, at equilibrium, where p% =
[-VP + uv2u]

1 1 1
:F_O[nB —Cgl - {_F_O[np + Cpl +F_0[nf - C.,_.]} =0
(60)
There will be positive values for “n” and "pD —[-VP +

uviul’.
The graph of n against p % — [-VP + uV?u], is shown below.

n.vsp Du/Dt-[- VP+|,|§ u]
1000 T T T T T

900

800

700

600

c” 500

400

300

200

100 [

0 I I I I I I 1 I L
0 100 200 300 400 500 600 700 800 900

p DU/DE]- VP+p V2 U]
Figure 9 Graph of n/p% — [~VP + uV?u]

1000

This shift, from n =0 to n > 0 leads from equilibrium to
harmonization or smoothness of the fluid molecules and the
parameters in the flow field. The greater the value of n the smoother
the fluid.

Conversely:

For a non-equilibrium fluid system;

When, p 2= < [~VP + uV2u], we have a non-equilibrium fluid
system.

1 1 1
= 5 lna = Cs] —{—F—o[n,, +Cpl +F—O[nT— c ]} <0
There will be negative values for “n” and ' —[-vP +
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uviul’.
The graph of n against p % — [-VP + uV?u], is shown below.

-n vs -(p Du/Dt-[- VP+u  u])

0
-100
-200 - o 1
-300 - 1
-400 o 1

< 500 ok 1
-600
-700

800 | e |

-900 [ A q

-1000

L L L I I I I
-1000 -700 -600 -500 -400 -300 -200 -100 0

~(p DU/Dt-[- VP+p V2 u])
Figure 10 Graph of —n/p% — [~VP + uV?u]
This shift from the equilibrium of the fluid fomn =0ton <0
leads to an outburst whose intensity (chaos) increases as you go
down the negative axis.

-900 -800

Solutions to the parameters in the linear and non-linear terms
of the Navier-Stokes Equation on Torus R?/7Z2.

The shear force divergence as a linear term with its solution given
in Lemma 4, due to internal friction (viscosity) in a fluid is integrated
on Torus R% /72, yielding the solution to the divergence of velocity
u in 2-dimensions. Substituting the solution of the divergence of u,
into the non-linear term yield the solutions of; v, local acceleration,
convective acceleration and pressure gradient. The solutions yield
the subsequent graphs, topology and vorticity transport equation.
Considering the linear term from “Lemma 4”:

2, =g, (% O w1
HWu=p (axz + ay? + 622) R [nf Cf]
(61)
0%u |, 9*u , d*u _ 1
Py a_ @ = ”—F[ = Cq]
2%u u \
Py [ ne — Gt in
2-dimen3|on
2%u
As 0z > 00,— > 0
0z2
Integrating,
u 62
ff ax2 dxdy = ff—[n, ] 0xdy

As, 6x—>0,0y—>0

ou u _ xy _
>yt Feialy [n, = C ]+ ¢y +cy,
atx=0,y=0
u=o,cy=0}
—Ou_ tou_ xyr, _
:Cx_ax hdy #Fo[nT C.l,
atx =1l,andy = h}
N 0u+ Ou_xy[ ¢
Y ox xay uF, et
du ladu Xy
L TR
dx hdy uF,
1
au_y[x__]
ay [tFU[ h][nT CT]
(62)
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0 %107 du/dy vs y

12 . I I I I I L L |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

y

. 2
Figure 11 Graph of ﬁ/y
Similarly,
h
ou_ x[y—]
o aT A [n, — C]
uFo |y =3
12 w107 du/dx vs x
10
sl
3
S 6
o
ol
.l
0 50 100 150 200 250 300 350 400 450 500

X

Figure 12 Graph of Z—;‘ /x

2l L
Let, gy = i yln,
(63)
B - O
X —mvﬁa— gx[nr _Cr]
(64)
Integrating (64),

X
fﬁu =f &x[ne — Crlox
0

u = xgx[n; — ;]
(65)
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1 1010 uvs x

0.5
ol \

S -0.5

Ak

1.5

2 I . | . I . |
-100 -50 o] 50 100 150 200 250 300

Figure 13 Graph of u/x

Similarly,
u= ysy[nr -G
(66)
45210% - - uvsy
al
35
sl
25
-
151
WL
05

0 100 200 300 400 500 600 700 800 900 1000
y

uvsxandy

Figure 14 Graph of u/y in 2D & u/x,y in 3D

5 x10"° uvsy

-3

0 100 200 300 400 500 600 700 800 900 1000

Figure 15 Graph of u/y showing the topology of the flow
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Velocities in the non-linear term and the divergence of
Pressure on Torus R? /72,

vvs epsllnn, and epsllnny:D

% = Fio( — Cg), from equation (53) 1:
=>p —+ua+ —+W3—Z] zplo(nB_CB) 27 ”um”m
ou Odu ou 1 " M il
[ +u— v$+w£ =E(nB_CB) > 0+
As 0z — oo, a_ — 0 ™
au au 1 *7
=>[ ay _m(nB_CB) <7

Substituting for 5 and 5

u 1 T T T T T |
0

o7+ e [n. — Cl +vey[n, —C] = — (ng — Cp) epsion, 2 epion, £ *

ou 1 Pro Figure 17 Graph of v/z, & £, in 3D
:)_+[u£x+vsy][ - 1:] _—(nB_CB)

at P 0 ou

ou For steady flow —=0
= [uey + vey|[n, — €] = m(ng —Cp) — % o { [nB cg] } { 1 [nB—CB] e n, —
(ng—Cp) 1 ou &y pFy &y pFy (o xT
DU ey = o] T ¢ C]} 68
(ng — Cp) 1 ou g T (68)

Sv=

v vs epsilon

- ST uU— 10
x10
&y pFo [n; — ] &y [n, — C;] ot &y T T1_
1 1 [ng—C € — T
:W:__[u]_u_x ok I
2 (&y pFo Ln—C; &y
_1 1 ng—Cp 2f
= V—_{ [ ]_ygx[nr_ r]}
2 &y pFy Ln—=Cy
(67) T
. «10™3 ‘ vvs epsilonx‘ ‘ ol
05 \\ 8
1
/ \\ 10
15 / \ 0 1 2 3 4 5 6 7 8 9 10
/ \ epsilon,
/ \
-2 / \ 107 vvs epsilony
/ -0.
> 25 / \ .
3 / \ -0.99999999985 ‘
/ \
/ \
s/ \ -0.9999999999 “
4 /"’ \\ |
/ \ -0.99999999995 |
450/
5 [ \ > B L

-1 08 06 04 02 0 02 04 06 08 1

\\
epsilon, x10* -1.00000000005 \\

108 vvs epsilony |
“ i -1.0000000001 ‘
-4.9999999992 ‘ ‘
49999999994 “ -1.00000000015 “
49999999996 ‘\ ~1.0000000002 .
-4.9999999998 \ - -500 0 500 1000

g epswlony
> -5
 sonomones ™ ‘ Figure 18 Graph of v/z, & v/,
-5.0000000004 “
5.0000000006 \“ From equations 56 and 54
] 1 1 1
5.0000000008
‘ _VPZ__[nP+CP]=_[nB_CB]__[nT_CT]
+5:00000000% -500 0 500 1000 FO FO
epsilony ap 1
Figure 16 Graph of v/e, & v/e, ax =03 o [uex + vy |Ine T]] 7 e — G,
ﬂOm]t>0
ap 1
> ——= p + [n, — C;] [p[uex + vey] - F_o]

(69)
For a steady flow, ‘;—’: =0
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op
ox

=[n, - C [p[uex +vey | — Fio]
(70)

For a steady, laminar and fully developed flow
[usx + vey] =0

ap 1
- -l &
a 1
R NLAn
(7)
For a Cottle flow,
0= op N %u
“ T H dy?
From (55)
°u 1 [ ¢
u 9y? = 1iFy Ny T
Integrating
ﬂ O a —ﬂ L i, = c.loyo
#ayz yoy = #Fonr ]0Y0y
atu=0,y=0
2 = 0
y
uzu—p[n,—c,]+c1y+c2 atu =1uyy =h
° Uy h
a=3 "t [n,
Asdy - 0
Substituting;
ux _ Y R o o oy12 (122
uw n + U UFy [ (nT CT)] h (1 h)
(72)
108 ualphalu vs ynwelocityprofile
7 T T
67\
4r \\\\ 7
R a
= \ //
il \\ /
:]000 —5;’)0 6 5(;0 10‘00 1500

Figure 19 Graph of == /y

Recall, (71)
dap 1
Tox —F—o[nr -G

L
-5 pe 2 2(1-3)
u h  uxu 6x h

(73)
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<107 ualphalu Vs ydpdxvelocityprofile

ualpha/u
=

~

\\\ ///
\ /
N /

2 L L L L
-1000 -500 0 500 1000 1500
y

Figure 20 Graph of X /y

Sy G e)2(1-2)
(74)

Solutions for Local and Convective Terms of Acceleration in
the NSE
From

B [ + ou + au]
p Dt =P u Yoy dy Yz

th _p[at +VV”]
Substituting values of the convective terms;

Du ou
th =p at+y€x[nr ]ygx[n‘r_cr]
1 1 ng —C
= [ B B]
2 (& pFyln, — C;
- ygx[n‘r - C‘r]}ygx[nr - CT]]
% _ [a_u [ng—Cgl yExEy[n‘r_Cr]Z
ot~ Flat 2pF, 2
(75)
o Py = e=Cel | yexsyne is the convective
2pF,
acceleration. (76)

sV abla vsepslion onvective cceleration
%10f n u xc a

V_abla
n u

epsllonx
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V abla_vs epslion _nd_psilon__onvective_cceleration 4 du/dt vs xocal cceleration
n xa e ye a %10

1.5

%107

05

du/dt
o

z Figure 22 Graph of% /y & Z—Z/x
0
epsilon
. — ? / — uvs epsilonx and epsilon Iocalxccelemﬁon
Figure 21 Graph of VVu / &, & VVu/¢,, €, '
To find the local acceleration;
From equation (69),
ou __ ap 1
T Toax T [n; — C;] [[usx + vsy] - E]' for .
R<: x[0,00],t >0
N ou_ dp 1 1 [ng — Cgl
at  pox Ttz — e ZpFo [n, — C,]
LYagyle =Gl 1
2 pFO 2 9
dp _ 1
Recall. — pE = - F_o [np + Cp] epsilon 0 g O s,
:)a_u__i[ +C]_[nB_CB]_ygxgy[n‘r_Cr]z
9t~ pE,m TP 2pF, 2 Figure 23: Graph of 2 /ex, g,
Ne — 1.']
pF, Substituting (76) into (77)
0 Du 1 |[ng—Cgl]
= 2o L[l [y 4 Gy = - G| - o5t =p = M5H T+ 6ol = ne - ) -
Yexey[ng—C;)? [ng—Cgl Yexey[ng—C;]?
M, local acceleration (7 > 2 zBp FOB > 2
«10% du/dtvs y Du 1
510 T T T T T T T T :P§=P pF [[nP+CP]_[nT_CT]]]
Du 1
= .DE = ,D [[nP + CP] — Ny — ‘r]]
D
= P = o e+ Col + [ = €]
D 1 1
5 = Q_I:ZF_O[nB_CB]=_p_F0[nP+CP]+[nT_CT] =4
3 (56)

Vorticity Transport Equation
From the solutions in (65) and (67)

CURL 1:
_ ©pl
’ “= [tFO[y—— [Tl.[ C‘r],
1 ,HFO [y B ﬁ]
U_E prOx__] [TLT—CT] [y_ﬁ]'[nT_CT]
w=0
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Figure 24

i i k

] 3] 3]

0x dy 0z
w = h h

2y =] [ wFolx 5] mp—cap e[y
h [n, - C] 2 [Tl |- e [n, = C;] 0
) sorae= 1] =] T =
_ (av au)
“= \Gx "y
1 I(h+y) 1
S w = 112 n12 (2 ZFO pY[nB CB][ [ Eyz[nr_ 1,'] [x__] [y
1Fo [x - ;] [}’ - 7] [n; = C.]
1 1 l
-t -3-)
92(duz_dux) 52 f’"_xy_%
~. The components of rotation are; ( F ) + ( TP ) (79)
w, =0
@, =0 Also recall, (42)
(B3-B)Iny =Inad

1 1 5.2 2

Wy = 2 2 (‘ﬂ Fo*pylng — p
{”Fo[x_ﬂ [y—%] [ne=Ci] 2 {{(w Vu+ uvViw} { + uvu}
lGL22) I YC) CRE NC FS Y R L ) D ~In

Csl [ yh ] [y l] 27 [n = Gl [x h] [ l] dor?

2 31 1 112 o . o )
hx*[n; — C;] [; - ;] [x - ;] Substituting (76) and (77) into the Natural logarithmic function of
78) vorticity transport equation gives;

- 1 [[np—csl

Recall, (38) =y PLp {—p—F [% +[np + Cpl = [n, — CT]] -
1(0u ou ou ou — 2 2,2
i e - g i QU 2 ysxsy[nr_cr] [ng—Cg] yExEy[nr_Cr] _
r{6t+uax+v6y+waz} (@.Vu + vVw . T . } =

L
Substituting equations (76)-(77) (solutions of local and convective ador? =Gl { il i "] +@, [y[x_ly]]} +
acceleration) into the vorticity transport equation (38) #Fo [ [x—z
%{_Lp I:[nBZ;CB] + [nP + CP] - [nr - ‘[]] - 32 duy Oduy 2(0uz duy 92 uy duy 2

?0 C]2 [ —C]z v (By Bz) a(ax Bz) (Bx By) (80)
YExEy nr T + [ng—Cg] + YExEylng—C(g } — 92x a2y 927
2pF, 2

nec { ST {(——>+
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To find the pressure and momentum of a fluid within a
reference frame (x,y)

Let (x,y) be the coordinates of maximum range x = R and maximum
height or altitude y = h.

From (54)

—VP = ——[np + Cp]
0

Bp _ 1
xR [np + Cpl

Integrating

S>np=—2atCp, =0
From, (66) (65) and (51)

ng = ys ,C: =0

n=—=~0=0
T XEX‘ T

ng = —Np +n;
PF, u
2‘”’3 = __°+_
R XEy

PF,
anz——°+— atx =R

> ng = 2 {-PFo + 2}

(82)
Lo DU
F_o[nB]_th‘CB_O
Du 1 u
:nB_pD__FO_R{_PFOJrE_}
Du _ 1 u

Dt FD_R{_PFO + g}

(83)

9 rho du/dt vs R
9.805 K10 - ; ; ‘

9.8045 -

|
/|
9.804 ,,,//

rho du/dt
™

9.8035 - H

9.803 - |

9.8025 I L L I I | I I L
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3D _ho u/dt vs R and epsilon
¢ 1% y

x10'2

tho ,u/dt
b b A o

LA
32 &

epsllonr 1] o R

Figure 25 p%/R, p%/sy

Similarly,
Du _ 1) PR, u i _directi
Pyl FO{ =+ ysy}, in y-direction
(84)

Solutions to the parameters in the linear and non-linear terms
on Torus R3/7Z3.

The shear force divergence as a linear term with its solution given
in Lemma 4, due to internal friction (viscosity) in a fluid is integrated
on Torus R3 /73, yielding the solution to the divergence of velocity
u in 3-dimensions. Substituting the solution of the divergence of w,
into the non-linear term yield the solutions of, v and w, local
acceleration, convective acceleration and pressure gradient. The
solutions yield the subsequent graphs and the vorticity transport
equation.

Considering the linear term from “Lemma 4;

V2y = 62u+62u+62u _1[ ]
HYU =R Gx2 dy?  0z2) F, iz ~Le
o%u | 9%u |, 9%*u 1
a2 o2 @—M—Fo[nr_cr]
Integrating,
m i 02 +02 dxdyd
axz " 972 ) 0¥
xyz
+]0x0ydz
- [[ 5 ne = canmar

As,0x — 0,0y — 0anddz — 0
x2y?z%[n;—Cq]
- UFy[y22z2+x222+x2y?]

u
85)
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Figure 27 : Graphofu/y & u/z
To find the change in velocity on torus [x, y, z].
ou _ 2xy*z*n,—C;]
ax UFy[y?z2+x2z2+x2y2)?
(86)
4 du/dx vs x
1540 - - : : ‘ s
b ,
0.5 q
3
5 0
o
0.5 1
A+ 1
15 | | . . . . | |
-100 -80 -60 -40 -20 0 20 40 60 80 100
X
. du
Figure.. 28 Graph °f3 /x
ou 2yx*z*[n,—C
ou _ yx*z*[n.—C;] (87)
0y  uFly?z2+x2z2+x2y?]?
25 x10* ‘ ‘ duldy‘ vsy
I
15¢ I
A
1F “ \
[
0.5
. I\
g o — \ A
s h\
\ |
\
15F \ “‘
2b J
-2.5 s .
10 8 -6 4 2 0 2 4 6 8 10
y
. du
Figure 29 Graph ofa /y
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ou 2zx*y*[n.—C,]
_— = T T. (88)
9z UFy[y?z2+x2z2+x2y?]?

4 du/dz vs z
2540 ‘ :

du/dz
o
/

-2.5

Figure 30 Graph of‘;—: /z

Integrating "u" on torus [1, h, k]7

ou_ 2xy*zt[n, — C;]
ax7* J; UFy[y?z? + x2z2% + x2y?)?
Asdx - 0

fdu _f 2xytzting = Ci]
T ) uF,[y2z% + x222 + x2y2)2
y*z*[n. — C.]
- In[y?2z2 2,2
U U [y2 221222 + x22% + x2y?] n[y?z? + x*z
+ x2y2] +c

c=1InA
Atx =Ly=hz=ku=uy
h*k*[n, — C;]

= — 1 21,2
€ = s L TR RPIRER? § k2§ 2he] LK
+ 22 + 12h?]
h*e*[n, — C
InA = u, [, — C1) In[h2k?

 uFo[h?2+k?][h2k? + I2k? + 2h?]
+ 12k2 + 1h?]

u 1K -Gl In[A2k2+12k2 +12h?]
= A=¢ © wFo[h2+k2][R2K2+12k2+1202]

(89)

U= y*z*ne—Crl
UFy[y?+2z2][y?z%2+x%2z2+x%y?

" — h*k*[n,—C;]
X uFy[h2+Kk2][h2k2+12k2+12h?]

(90)

]ln[yzzz + x%z% + x%y?] +

In[h2k? + 12k? + [2h?]
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u izt n. =Gl 2,2 2,2
U UocltFo[y2+22][y222+x222+x2y?] ln[y 25+ X725+
2,21 h*k* [n.—Cq] 21,2 4 1212
x*y*] uFo[h2+k2][h2k2+lzk2+lzh2]ln[h k4 %K+
I’h?] +1
@)
u
U
[n‘[ B C‘[] y4'Z4' [n‘r B C‘r] 2.2
= In[y?z
uapFo |[y?+2%1[y?z* + x22% + x?y?]

+ x%z% + x?y?]
h*k*[n, — C;] sia s ais
" R REITR2R + k2 + 2] UK+ PR R
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474 ne—Cq]
u [no=C,] In [yzzz+xzzz+x2yz][y2+zz][y2z2+x2z2+x2y2] +1
U U Fy htk*ng—Cr]

[hzk2+lzk2+lzhzl[h2+k2][h2k2+12k2+lzh2]

(92)

To find the velocities in the non-linear term in 3-dimensions.

p % = — (ng — Cp), from equation (53)
o

ou ou ou ou] _ 1 _
=p E+ua+va+wa] —FO(nB Cg)
[6u+ 6u+ 6u+ Ju 1 ( )
S |l—4+u—+v— — | =, -
ot | “ox Uay Yz pFy s —La
_ [n:—C;] _ [n.—C]
Let! ﬁ - UFo[y2z2+x222+x2y?] P = UFp[y2z2+x222+x2y2]?
ou 2xy*z4[n, — C;] S
> —= =
Ox  uFyly?z? + x2z?% + x2y?]? vee
d 2yx*z4[n, — C
L ou_ yx*z*[n, — C;] — 2yxtzte
0y uFoly?z? + x222 + x2y?]?
- ou 2zx*y*[n, — C;] oty
0x  uFy[y2z2 + x2z2 + x2y2]2 e
_ Xy ne=Cl 5 9 9
u= UFy[y2z2+x222+x2y?] =Xx"ytz ﬁ
93)
ou 4,4 4,4 4,4
> E+u[2xy zr@l + v[2yx*zt ] + w[2zx*y*p]
1
= E [ng — ¢l
ou
=5t 2xyzoly3z3u + x323v + x3y3w]
1
) = m [ng — ¢l
6—1; = pip [ng — cgl — 2xyzely3z3u + x323v + x3y3w],
0
Local acceleration (94)
3,3 3,3 3.3 =% _ L,
B )
2xyz<p[yzu+xzv+xyw]—at oF [ng —cz]
0
Convective acceleration (95)
= y323u + x323v + x3y3w
_ 1 [ 1 1 Ou
T 2xyzepF, Mz — Cp 2xyze Ot
1 1 OJu
= x373p + x3y3w = —e]— =
xrzvTxyTw 23xysz<ppF(, [ns = c5] 2xyzp Ot
—y3z3u
z3v + 3W——1 [n —c]——1 ou
YW X yzgpF, B T B T 2ty ot
y3z3u
-
3+ i 1 [ 2yx*z* 0y ou
Zvryw= 2x4yZ(pp3F03 'z — Cp 2x*yz "ou’ ot
y3z3u
-
3,3
y3z3u
2 +y3w = m[nlg —cgl —23v— o
1 y3z3u
3 3, —
2z v+y W—W[HB—CB]— X3
1 525
=2z2%v +y3w = [TLB—CB]_y b

2x*yzppFy

Solving for v and w simultaneously between any two points; 1 and

2 in a flow field,
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5 5
I(-‘Ie)tY 2231” * y31W = 2x4[11;1_Z:Z]PF0 B . 15‘2«51151
5 5
(222)32v HYe = zx4[;32;22]ppo > Z;Zc:ﬁz
3 3
k= yol| =, = 2]
[ng — cg] _3’51251ﬁ1 3
Ap = 2x*1y12:0pF, X1 Y
[ng — cgl _ySZZSZBZ 3
2x*3Y22,0pFo X2 Y2
_ 3 [ng — ¢zl _ y51251ﬁ1]
- Y 2x*1y12,0pF, X1
3 [ng — gl
Y 2x*3y22,0pFy
yszzszﬁz
228
273 EnB - cp] _ }’5125131
Aw = 2x*1y1219pFy ; xé
223 [ng — cgl Yz 252
Zx:2y§22§0PFo X2
=273, [np — cgl Yz zﬁz]
2x%3Y,2,0pFy X2
— 273, [ng — ¢l
2x*1y12,0pF,
y51251ﬂ1
_ T] _
Av 1 ng—c
it rxmeorn | IR e

y5125131] _ y31 [ [np—cgl J’Szzszﬁz]} (96)

X1 2x*,y2229pF, X2

Aw 1 3 [ng—cgl
w=—= —— 1|l
Ak z31y3,-23,93, 2x*1y12,9pF,
y51251ﬁ1] _ 23 [ [np—cgl yszzszﬁz]} (97)
X1 2 |axt,y,2,0pF, X2

Pressure gradient

1 1 1
-Vp = _F_O[nP + CP] = F_O[nB + CB] _F_O[n‘r + C‘r]
Ju

VP =r|5

+ 2xyzoly3z3u + x323v + x3y3w]]

1
- F_O [nr + C‘r]

= [ne + Gl (98)
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Vorticity Transport Equation
From the solutions in (93), (86), (87) and (88)

CURL 2:

nyZZZ[nT B Cr]
“= UF[y?z2 + x22% + x%y?]
ou 2xy*z4[n, — C;]
ax uFy[y?z? + x222 + x2y?]?
ou 2yx*z4[n, — C;]
ay "~ uRo[y?72 + x772 + x7y’]?
ou 2zx*y*[n, — C;]

0z~ pFoly?z? + x222 + x2y2]?
w. = y4z4[nr - Cr]
* T IR Y2 + 2212[y222 + %222 + x2y?
+x22% + x%y2%] + C,
x*z4[n, — C;]
Uy = Fo[X% + 2212[y22% + x22% + x2y2]?
+ %222 + x%y? + C,
4.4
e Xy = G iy
WFo[x% + y212[y222 + x272% + x2y2]2

+x22% + x%y?) + C,
Ux
w = V X (uy>
uZ

L In[y?z?

In[y?z?

i j ok
lo o a
T |ox 9y oz

Uy Uy Uy
The components of rotation are:

(6uz 3uy) x*[n:—Cq] {y4[2yx2+2y22]
w’x = = -

oy  0z)  wRly*z2+x?z2+x?y?2 L [x2+y?]
z*[2zx2%+22y?] "
[x2+22]
Y [y?z% +x*2* +x2y?][4x? +4y° —2y°] -2y [x*+y*][x* +2%]}
3 2,2 2,2 25,2 £x2+3£2]2 2 2 2 2 2 2 -
z Zo+X“Z"+x 4x°+4z°-22°]|-2z"[x"+ x“+z
{ly Y2l i 1-222[x? +y?]L 1}} Infy222 +
x?z? + x2y?] (99)
. = (auz _ 5&) — y*n—C:l {x4[2xy2+2xz2] _
' ox 0z UFo[y?z2+x222+x2y?]? [x2+y?]
z*[2zx2%+22y?]
[y2+22]
2 {ly*z* +x%2% +x°y|[4x> +4y? —2x°) 202 [x* +y?][y* +2°]}
[x2+y2]2 -
23{[y222+x222+x2y2][4y2+422—222]—222[x2+yZ][yZ+zZ]}} In[y?z? +
[y2+22]2
x2z% + x%y?] (100)
— ("ﬂ _ %) _ 2*[n,—C] {x4[zxy2+zx22] B
“ ox 0y UFo[y2z2+x222+x2y?]? [x2+22]
y*[2yx?+2yz?]
T ezl
x3{[y?22+x2 2% +x2y?|[4x? +42°—2x?] - 2x2[x2 +2°][y*+2%]}
[x2+22)2 -
y3{[y222+xzzz+xzyz][4y2+4zz—2y2]—2y2[y2+22][x2+22]}} Inly?2? +
[y2+22]2
x?z% + x%y?] (101)
Recall, (38)
1(0u ou du ou) _ — 2
;{5+ua+ vo, b Wo—z} = (@.Vu+ vwWo

Substituting equations (99), (100) and (101) (solutions to the partial

https://dx.doi.org/10.4314/swj.v20i4.46

derivatives) into the vorticity transport equation;
l{L [ng — cgl — 4xyzoly3z3u + x323v + x3y3w]} =
r \pF,y

2xy[ne—Cil 3,3 3,3 3.,3
UFo[y2z2+x222+x2y2]2 {y Zw t X7 wy + X7y wZ} +
ou, ou ] F] ou ou
) el ()
92%x a2y 92z
(102)
Recall (42)

(B-Pflny =Inad
2
p ou  _
{{(W.V)u+ uviw} {E + uVu}} L
dor?

Substituting (94) into (95) into the Natural logarithmic function of
vorticity transport equation gives;

—1In

= yG-ALp {pLF [ng — cgl — 4xyzoly3z3u + x323v +
[

2xy[n;—C;]
UFy[y?2z2+x222+x2y?

2
x3y3w]} = a3dor? 7 {y:z3w, +

2(331‘2 f’;ly) az(auz aux)
3,3 34,3 y z dx 9z
Py, + 3y o)+ vi—2 b

0%z
(103)

CONCLUDING REMARKS

The derived solutions provide exact expressions for velocity,
acceleration, pressure gradients, and vorticity, particularly on a
toriodal domain. The logarithmic model of vortex formation
highlights the role of energy, geometry, and spin in turbulent flows.
By bridging fluid dynamics with quantum mechanics and relativity,
this work contributes a novel analytical path to one of the Clay
Millennium problems.

The linear term (Q) of the Navier-Stokes equation expressed as a
function of its quantum number, provides a solution for the PDEs.

By differentiating the function, lim 49 _ f(ngtdng)-j(ng)
Ann—)o dnn dng_

E,,, was obtained from Lemma 1. Furthermore, a solution of the
form, V2u = !%F [n; — C.], was obtained for the Shearing force.
0

The momentum force per volume and the pressure gradient in the
same manner, this led to a new simplified form of the Navier-Stokes
equation. By integration from both sides of the equation Vv n, € Z
and RY = {(x1,%p,...,x5) € R d > 0}, yields tractable

. F, - - — .
solution for u = "TT’"u(xf 1xg=1, ..., x371), itrate of change

in [R%/Z%:d >0, t>0] and the pressure gradient,
%, R%: x[0, oo]. Substituting the aforementioned solutions into
the substantial derivative of the momentum force also provides
tractable solutions for the Local and convective accelerations on
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torus. Plotting u(x,y,z,t), against space and time from the
aforementioned equations yields; parabolic curves, asymptotic
curves, inverted curves, linear graphs and also the topology of the
flows as shown in figures; 17, 23, 24, 25 and 26. The general
quantum number (n) of the Navier-Stokes equation determines,
the states of equilibrium, smoothness and turbulence (chaos) in a
fluid continuum. The existential of smooth solutions is a function of
positive values of the general quantum number "n" of the Navier-
Stokes equation at any given time. Turbulence is a function of the
negative values of "n" at any given time. When n = 0 the fluid is
said to be at equilibrium (in between Smoothness and Outburst), at
n < 0 the fluid is in a state of chaos (outburst) whose magnitude
increases as n is decreasing (going down the slope of the graph in
fig. 6), at this condition the formation of vorticity follows a natural
logarithmic ~ function showing mechanical/thermal energy,
vibrational energy and vorticity term and its diffusion

(G=Iny =1n [¢3 /Mm] -

p ou
[{(m.vn” qum}{6t+uvu}} L

In
daorg

), and also when n > 0 the fluid is

in a state of smoothness whose magnitude increases with increase
in n (going up the slope of the graph in fig. 5). At n = 0 the fluid is
said to be in equilibrium.

This approach not only deepens theoretical understanding but also
holds potential applications in weather prediction, aviation safety,
quantum fluid modeling, and advanced computational fluid
dynamics. Future work will focus on computing specific minimum
forces for different fluid types and validating these models with
empirical data.

Existence And Smoothness Of Navier—-Stokes Solutions:

Proof
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