
Science World Journal Vol. 20(No 4) 2025   https://dx.doi.org/10.4314/swj.v20i4.46 
www.scienceworldjournal.org 
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)   
Published by Faculty of Science, Kaduna State University 

 

 Existence And Smoothness Of Navier–Stokes Solutions: A Complete Mathematical 
Proof 

1657 

EXISTENCE AND SMOOTHNESS OF NAVIER–STOKES 
SOLUTIONS: A COMPLETE MATHEMATICAL PROOF 
 

*1Gado Nehemiah Umar, 2Desmond Bala Bisandu 
 

1Department of Mechanical Engineering, Ahmadu Bello University, Zaria 
2Centre for Computational Engineering Sciences, Cranfield University, MK43 0AL 
 
*Corresponding Author Email Address: omar1gado@gmail.com     
 
ABSTRACT 
In the continuum of fluid, average properties, pressure, density, 
velocity, and temperature, are evaluated over a small volume with 
a large number of particles of fluid. These properties vary 
continuously in space and time. Mathematical fluid dynamic models 
of these properties give rise to the continuity equation, momentum 
equation, energy equation, Euler’s equation, Cauchy’s equation of 
fluid motion, and the Navier-Stokes equations. These known 
existing equations add meaning to understanding the mechanics of 
fluid in science and engineering, geophysics, climate science, and 
computational fluid dynamics (CFD). Despite their long history, the 
analytical structure of the equations remains partially understood; 
famously, the Clay Mathematics Institute lists the existence of 
smoothness of solutions in three dimensions as one of the 
Millennium Prize Problems. However, to solve the Navier-Stokes 

equations, we must dig down to the very minimum force (
𝐹𝑚
→ ) by 

which an infinitesimal fluid particle (Quantum molecule) moves 
around its volume mass under gravity, in alignment with quantum 
theory. In this paper ,a solution to the Navier-Stokes equation on 

𝑅𝑑: 𝑑 ≥ 3, is put forward. A novel analytical framework for solving 

the Navier-Stokes equations by introducing the concept of a 
minimum force - the smallest quantifiable force acting on a 
quantum fluid particle under gravity. The analysis quantize the 
fundamental forces (momentum, pressure, and shear) acting on an 
infinitesimal fluid element, leading to discrete quantum numbers 
that characterize each force (𝑛𝐵, 𝑛𝑝, 𝑛𝜏). These quantum values 

offer new solutions for both linear and non-linear terms of the 
Navier-Stokes equations on a torus. A general quantum number 
emerges (𝑛), determining fluid smoothness or turbulence: positive 
values correspond to smooth flow, while negative values represent 
chaotic outbursts and vorticity. The resulting solutions provide 
insight into local and convective accelerations, vortex formation, 
and turbulence behaviour, revealing a natural logarithmic structure 
underpinning vortex dynamics. This approach merges classical 
fluid dynamics with quantum theory and relativity, offering new 
pathways for addressing one of the millennium problems-the 
existence and smoothness of Navier-Stokes equations. 
 
Keywords: Navier-Stokes Equations, quantum numbers, 
minimum force, smoothness, outburst, convective acceleration 

 
INTRODUCTION 
In the 18th century, the beautiful mathematical mind of Leonhard 
Euler, a Swiss, described the flow of frictionless and 
incompressible fluids. Subsequently, friction (viscosity) was 
introduced for more complicated viscous fluids in 1821 by the 
French Engineer Claude-Louis Navier. Decades later, the British 
Mathematical Physicist Sir George Gabriel Stokes improved the 

description to the famous Navier-Stokes equation given below. 
Considering an infinitesimal differential element in a flow field, 
 

 
Figure 1    Fluid Molecule (infinitesimal differential element) 
 
From Newton’s Second Law of Motion, the net force (∑𝑓) acting 

on the element = mass × acceleration. 

⟹   ∑𝑓 = 𝑚𝑎𝑥        in 𝑥-direction    
     (1) 

 𝑎𝑥 =
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
    

                      (2) 

⟹ 𝑎𝑥 =
𝒟𝑢

𝒟𝑡
 --------- Substantial derivative 

⟹ ∑𝑓 =
𝒟

𝒟𝑡
[𝑚𝑣] = 𝑚

𝒟𝑢

𝒟𝑡
= 𝜌. 𝑑𝑥. 𝑑𝑦. 𝑑𝑧.

𝒟𝑢

𝒟𝑡
 

⟹ 𝜌. 𝑑𝑥. 𝑑𝑦. 𝑑𝑧.
𝒟𝑢

𝒟𝑡
= 𝜌. 𝑑𝑥. 𝑑𝑦. 𝑑𝑧. 𝑎𝑥 = 𝜌 (

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+

𝑣
𝜕𝑢

𝜕𝑦
+𝑤

𝜕𝑢

𝜕𝑧
)𝑑𝑥𝑑𝑦𝑑𝑧                           (3) 

Also, ∑𝑓𝑥 = ∑𝐵𝑜𝑑𝑦 𝑓𝑜𝑟𝑐𝑒𝑠 + ∑𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑓𝑜𝑟𝑐𝑒𝑠                                                                            
(4) 

∑𝑓 =∑𝑚𝑔 +∑𝑃𝐴 

𝑚𝑎𝑥 = 𝑚𝑔𝑥 +∑𝑃𝐴 

𝜌. 𝑎𝑥. 𝑑𝑥. 𝑑𝑦. 𝑑𝑧 = 𝜌𝑔𝑥𝑑𝑥. 𝑑𝑦. 𝑑𝑧 + ∑𝑃𝐴                                                                                  
(5) 

∑𝑃𝐴 =∑𝑛𝑜𝑟𝑚𝑎𝑙 𝑓𝑜𝑟𝑐𝑒𝑠 +∑𝑆ℎ𝑒𝑎𝑟𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒𝑠 

𝜎𝑖𝑗 = |

𝜎𝑥𝑥 𝜏𝑦𝑥 𝜏𝑧𝑥
𝜏𝑥𝑦 𝜎𝑦𝑦 𝜏𝑧𝑦
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧𝑧

| 

In the stress tensor, there are 9 components of the normal and 
shear forces. 
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Due to symmetry, 𝜏𝑥𝑦 = 𝜏𝑦𝑥 , 𝜏𝑥𝑧 = 𝜏𝑧𝑥 , 𝑎𝑛𝑑 𝜏𝑦𝑧 = 𝜏𝑧𝑦, as 

such, there are 6 components. 

⇒ ∑𝑃𝐴 = 𝜎𝑥𝑥(𝑥 + 𝑑𝑥)𝑑𝑦𝑑𝑧 + 𝜏𝑦𝑥(𝑦 + 𝑑𝑦)𝑑𝑥𝑑𝑧 +

𝜏𝑧𝑥(𝑧 + 𝑑𝑧)𝑑𝑥𝑑𝑦 − 𝜎𝑥𝑥(𝑥)𝑑𝑦𝑑𝑧 − 𝜏𝑦𝑥(𝑦)𝑑𝑥𝑑𝑧 −

𝜏𝑧𝑥(𝑧)𝑑𝑥𝑑𝑦 

⟹ ∑𝑓𝑥 = 𝜌
𝒟𝑢

𝒟𝑡
= 𝜌𝑔𝑥 +

𝜎𝑥𝑥(𝑥+𝑑𝑥)−𝜎𝑥𝑥(𝑥)

𝑑𝑥
+

𝜏𝑦𝑥(𝑦+𝑑𝑦)−𝜏𝑦𝑥(𝑦)

𝑑𝑦
+
𝜏𝑧𝑥(𝑧+𝑑𝑧)−𝜏𝑧𝑥(𝑧)

𝑑𝑧
 

⟹ 𝜌
𝒟𝑢

𝒟𝑡
= 𝜌𝑔𝑥 +

𝜕𝜎𝑥𝑥

𝜕𝑥
+
𝜕𝜏𝑦𝑥

𝜕𝑦
+
𝜕𝜏𝑧𝑥

𝜕𝑧
                                                                                           

(6) 

       lim
𝑑𝑥→0
𝑑𝑦→0
𝑑𝑧→0

𝜎𝑥𝑥(𝑥+𝑑𝑥)−𝜎𝑥𝑥(𝑥)

𝑑𝑥
𝜏𝑦𝑥(𝑦+𝑑𝑦)−𝜏𝑦𝑥(𝑦)

𝑑𝑦

𝜏𝑧𝑥(𝑧+𝑑𝑧)−𝜏𝑧𝑥(𝑧)

𝑑𝑧

 

From constitutive equations, 

𝜎𝑥𝑥 = −𝑃 + 2𝜇
𝜕𝑢

𝜕𝑥
,               𝜏𝑦𝑥 = 𝜏𝑦𝑥 = 𝜇 (

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) 

𝜎𝑦𝑦 = −𝑃 + 2𝜇
𝜕𝑣

𝜕𝑦
,               𝜏𝑦𝑧 = 𝜏𝑧𝑦 = 𝜇 (

𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
) 

𝜎𝑧𝑧 = −𝑃 + 2𝜇
𝜕𝑤

𝜕𝑧
,               𝜏𝑧𝑥 = 𝜏𝑥𝑧 = 𝜇 (

𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
) 

Substituting, the constitutive equations into (6) 

𝜌
𝒟𝑢

𝒟𝑡
= 𝜌𝑔𝑥 −

𝜕𝑃

𝜕𝑥
+ 2𝜇

𝜕2𝑢

𝜕𝑥2
+ 𝜇

𝜕2𝑢

𝜕𝑦2
+ 𝜇

𝜕2𝑣

𝜕𝑥𝜕𝑦
+ 𝜇

𝜕2𝑤

𝜕𝑥𝜕𝑧

+ 𝜇
𝜕2𝑢

𝜕𝑧2
 

⟹  

𝜌
𝒟𝑢

𝒟𝑡
= 𝜌𝑔𝑥 −

𝜕𝑃

𝜕𝑥
+ 𝜇

𝜕2𝑢

𝜕𝑥2
+ 𝜇

𝜕2𝑢

𝜕𝑦2
+ 𝜇

𝜕2𝑢

𝜕𝑧2
+ 𝜇

𝜕2𝑢

𝜕𝑥2

+ 𝜇
𝜕2𝑣

𝜕𝑥𝜕𝑦
+ 𝜇

𝜕2𝑤

𝜕𝑥𝜕𝑧
 

⟹  

𝜌
𝒟𝑢

𝒟𝑡
= 𝜌𝑔𝑥 −

𝜕𝑃

𝜕𝑥
+ 𝜇 [

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
]

+ 𝜇 (
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑥𝜕𝑦
+
𝜕2𝑤

𝜕𝑥𝜕𝑧
) 

𝜇 (
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑥𝜕𝑦
+
𝜕2𝑤

𝜕𝑥𝜕𝑧
) = 0 

⟹ = 𝜌
𝒟𝑢

𝒟𝑡
= 𝜌𝑔𝑥 −

𝜕𝑃

𝜕𝑥
+ 𝜇 [

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
] 

⟹  = 𝜌 [
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
] = 𝜌𝑔𝑥 −

𝜕𝑃

𝜕𝑥
+ 𝜇 [

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
]                           (7) 

⟹
𝜕𝑢𝑖

𝜕𝑡
+ ∑ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
=𝑗 𝑓𝑖(𝑥, 𝑡) −

𝜕𝑃

𝜕𝑥𝑖
+ 𝜈Δ𝑢𝑖                          (8) 

∴ 𝜌
𝒟𝑢

𝒟𝑡
= −∇𝑃 + 𝜇∇2𝑢        ( Navier-Stokes equation in Vector 

form)                          (9) 
Where, 𝑓𝑖(𝑥, 𝑡) = 0 (given external force due to gravity, electro-
magnetic field). 

𝜌
𝒟𝑢

𝒟𝑡
= Momentum force (Substantial Derivative) 

∇𝑃 = Pressure Force (Pressure divergence) 

𝜇∇2𝑢 = Shear force. 
Leray (1934) introduced the concept of weak solutions, laying the 
foundation of modern mathematical fluid dynamics. While global 
weak solutions exist, their regularity remains unresolved. 

Subsequent work by Ladyzhenskaya (1959), Temam (1977), Folas 
and collaborators (1990s), has clarified conditions for local 
existence, uniqueness, and regularity. However, the full problem 
remains open. Several simplified flow configurations yield 
analytical or semi-analytical solutions: laminar pipe flow (Hagen-
Poiseuille), Couette and Taylor-Couette flows, and boundary-layer 
approximations. These benchmarks play a critical role in validating 
computational and experimental studies. 
Contemporary research direction emphasizes: Machine learning-
enhanced solvers, Data-driven turbulence closures, High-fidelity 
DNS at unprecedented Reynolds numbers, Quantum algorithms 
for PDE solvers, and regular analysis using harmonic analysis and 
functional spaces (Besov, Lebesgue, Sobolev). These trends 
reflect efforts to address the computational and theoretical 
limitations of classical methods.    
Exact solutions (analytical solutions) have proven intractable due 
to the fluid flow's chaotic (turbulent) nature. Except for an 
incompressible, laminar, and steady flow, more realistic, difficult 
fluid flow problems are solved by interpolation in numerical analysis 
(Computational Fluid Dynamics). Accumulation of uncertainties 
(errors) over time is a limitation in numerical analysis; turbulence 
cannot be predicted, and weather conditions for the longer term. 
Rapid change in velocity (𝑢) pressure gradient and temperature in 
the continuum of fluids, seldom use the algorithm of turbulence and 
the exact solutions to the convective and local accelerations in the 
non-linear term of the equation for all kinds of fluid. An incomplete 
understanding of its complexity has led to minor accidents and 
plane crashes in the aviation industry and has negatively impacted 
the ecosystem. Exact (analytical) solutions to the Navier-Stokes 
equation will revolutionize the aviation industry, weather prediction, 
quantum computing, medicine, and the maritime. The world will be 
a safer place for mankind, and extraterrestrial travel will greatly 
improve. 
The Navier-Stokes equations remain a central topic in theoretical 
and applied physics. While substantial progress has been 
achieved-ranging from mathematical analysis to turbulence 
modeling and computational simulation. Nevertheless, the core 
challenges, particularly understanding turbulence and proven 
global well-posedness, persist.    
The existential of smoothness of the Navier-Stokes equation on the 
torus is one of the Millennium Problems. As such it has become 
one of the most studied problems in the study of partial differential 
equations. In this paper, a combination of the minimum force and 
quantum numbers from ‘Quantum theory’ were used to describe 
the forces per volume acting on a quantum fluid molecule. This led 
to a new general simplified equation and solution to the Navier-
Stokes existence. Hence, smoothness and existential analysis. 
 
Preliminaries 
Quantum mechanics is the theory of the infinitesimal. The forces in 
the Navier-Stokes equation were taken as multiples of a minimum 

force (
𝐹𝑚
→ ) i.e., the Navier-Stokes equation is a function of a set of 

quantum numbers, 𝑁 = {(𝑛, 𝑛𝐵 , 𝑛𝑝, 𝑛𝜏) ∶  ∀ 𝑛, 𝑛𝐵, 𝑛𝑝, 𝑛𝜏 ∈

ℤ} 𝑛, is the general quantum number for the Navier-Stokes 

equation, and 𝑛𝐵, 𝑛𝑝, 𝑛𝜏 are quantum numbers for the momentum 

force, pressure force, and the shear force. 
Lemma 1: Let the force per volume (Ω) in the Navier-Stokes 
equation vary directly with its quantum number 𝑛Ω, and let 

𝑓: 𝑛Ω → Ω be a function so that;  𝑓(𝑛Ω) ≥ 0 if 𝑛Ω ≥ 0 , 

https://dx.doi.org/10.4314/swj.v20i4.46
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𝑓(𝑛Ω) = 0 if 𝑛Ω = 0, 𝑓(𝑛Ω) ≤ 0 if 𝑛Ω ≤ 0 and 
1

𝑓0
[𝑛Ω − 𝐶Ω] 

be a solution to the PDEs for every 𝑛Ω ∈ ℤ  and 𝐶Ω ∈ ℝ .  

Proof: Let 𝐹0 =
1

𝐹𝑚
 (inverse of the minimum force), 

                           Ω 𝛼 𝑛Ω 

⇒                             Ω = 𝑘𝑛Ω,  

Where, 𝑘 is a constant of proportionality called the minimum force 

(𝐹𝑚).  

⇒
𝑛Ω

Ω
=
1

𝑘
=

1

𝐹𝑚
= 𝐹0 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                (10) 

⇒       Ω = 𝑓(𝑛Ω), linear function 

⇒      𝑓′(𝑛Ω) =
ΔΩ

Δ𝑛Ω
=
𝑓(𝑛Ω+Δ𝑛Ω)−𝑓(𝑛Ω)

Δ𝑛Ω
=

𝐹𝑚 ⇒ lim
Δ𝑛Ω→0

dΩ

d𝑛Ω
=
𝑓(𝑛Ω+d𝑛Ω)−𝑓(𝑛Ω)

d𝑛Ω
= 𝐹𝑚 

⇒ 𝐹𝑚. d𝑛Ω = dΩ                                       (11)  
Integrating, 

                ∫𝐹𝑚. d𝑛Ω = ∫dΩ 

⇒            ∫ d𝑛Ω =
1

𝐹𝑚
∫ dΩ 

⇒          𝑛Ω = 𝐹0. Ω + 𝐶Ω 

⇒ Ω =
1

𝐹0
[𝑛Ω − 𝐶Ω]                                              (12) 

 
Minimum Force 
Mechanical drivers of fluids are injectors of integer multiples 𝑛 =
0,1,2,3,… (quantum numbers) to an already existing minimum 

force (𝐹𝑚) due to gravity, responsible for the motion of a molecule 

of fluid around its volume mass (Μ). Mechanical drivers enlarge 
this minimum force and cause the flow or motion in their direction. 
 
Lemma 2: Let the mass volume ratio (Μ) of the aforementioned 

infinitesimal (differential fluid element) quantum mass (𝑀𝑞), 

occupying an infinitesimal volume (𝑉𝑞) be taken as unity 

(constant). So that; Μ =
𝑉∝

𝑉0
=
𝑀∝

𝑀0
=
𝑀𝑞+𝑉𝑞

𝑀𝑞−𝑉𝑞
, if −𝑀0 ≤ 𝑀𝑞 ≤ 𝑀∝ 

and −𝑉0 ≤ 𝑉𝑞 ≤ 𝑉∝ (−𝑀0 < 0 𝑎𝑛𝑑 𝑀∝ > 0, and −𝑉0 <

0 𝑎𝑛𝑑 𝑉∝ > 0). 

Proof: Let𝑀𝑞 = 𝑉𝑞 , ⇒ 𝜌 = 1 

𝑀𝑞

𝑉𝑞
= 𝑘                                                                       (13) 

⇔  𝜌 =
𝑀𝑞

𝑉𝑞
= 𝑘 

∴ 𝑀𝑞 = 𝑘𝑉𝑞 ⇔ 𝑀𝑞 . Δ𝑀 = 𝑘𝑉𝑞 . Δ𝑀  

Integrating, 

∫ 𝑀𝑞 . ∆𝑀
𝑀∝

𝑀0

= ∫ 𝑘𝑉𝑞 . ∆𝑀
𝑀∝

−𝑀0

 

⇒ ∫ 𝑀𝑞 . 𝑑𝑀
𝑀∝

𝑀0

= ∫ 𝑘𝑉𝑞 . 𝑑𝑀
𝑀∝

−𝑀0

 

As, ∆𝑀 → 0 

⇒ 𝑀𝑞(𝑀∝ −𝑀0) = 𝑘𝑉𝑞(𝑀∝ +𝑀0) 

⇒ Μ =
𝑀∝

𝑀0
=
𝑀𝑞+𝜌𝑉𝑞

𝑀𝑞−𝜌𝑉𝑞
=
𝑀𝑞+𝑘𝑉𝑞

𝑀𝑞−𝑘𝑉𝑞
 

⇒ Μ =
𝑀∝

𝑀0
=
𝑀𝑞+𝑉𝑞

𝑀𝑞−𝑉𝑞
                                                  (14) 

Conversely, 
𝑀𝑞 . ∆𝑉 = 𝜌𝑉𝑞 . ∆𝑉 

Integrating 

⇒ ∫ 𝑀𝑞 . ∆𝑉
𝑉∝

𝑉0

= ∫ 𝜌𝑉𝑞 . ∆𝑉
𝑉∝

−𝑉0

 

As, ∆𝑉 → 0  

⇒ ∫ 𝑀𝑞 . 𝑑𝑉
𝑉∝

𝑉0

= ∫ 𝜌𝑉𝑞 . 𝑑𝑉
𝑉∝

−𝑉0

 

⇒ 𝑀𝑞(𝑉∝ − 𝑉0) = 𝜌𝑉𝑞(𝑉∝ + 𝑉0) 

⇒ 𝜈 =
𝑉∝

𝑉0
=
𝑀𝑞+𝜌𝑉𝑞

𝑀𝑞−𝜌𝑉𝑞
=
𝑀𝑞+𝑘𝑉𝑞

𝑀𝑞−𝑘𝑉𝑞
                                                  (15) 

⇒ 𝜈 =
𝑉∝

𝑉0
=
𝑀𝑞+𝑉𝑞

𝑀𝑞−𝑉𝑞
 , {𝜌 = 𝑘 = 1} 

∴ Μ =
𝑉∝

𝑉0
=
𝑀∝

𝑀0
=
𝑀𝑞+𝑉𝑞

𝑀𝑞−𝑉𝑞
                                                      (16) 

Μ, is a dimensionless mass volume ratio. 

Where, 𝑀𝑞, is the quantum mass of a fluid molecule 

𝑉𝑞 , is the volume occupied by the quantum mass (quantum 

volume). 
 

 
 

 
Figure 2   Graph of M/𝑉𝑞  and M/𝑀𝑞 in 2D and 3D 

 
From Figure 2, at quantum levels, M varies with mass defect and 
shrinking volume. 
 
Lemma 3: The minimum force, ‘𝐹𝑚 ’ is proportional to the mass 

volume ratio ‘Μ’ under gravity. This is the minimum weight per 

molecular mass volume of a fluid particle. 
Proof: 
⇒ 𝐹𝑚𝛼 Μ 

    ⇒ 𝐹𝑚 = 𝐾Μ, where K is a constant, K=𝑔,  

Μ is the dimensionless mass volume ratio for the fluid and  𝑔 is the 
acceleration due to gravity. 

https://dx.doi.org/10.4314/swj.v20i4.46
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∴ 𝐹𝑚 = Μ𝑔 = [
𝑀𝑞+𝑉𝑞

𝑀𝑞−𝑉𝑞
 ] 𝑔                                           (17) 

⇒ 𝐹𝑚(𝑥, 𝑦, 𝑧) = 𝑖 [
𝑀𝑞+𝑉𝑞

𝑀𝑞−𝑉𝑞
 ] 𝑔(𝑥,𝑦,𝑧) + 𝑗 [

𝑀𝑞+𝑉𝑞

𝑀𝑞−𝑉𝑞
 ] 𝑔(𝑥,𝑦,𝑧) +

𝑘 [
𝑀𝑞+𝑉𝑞

𝑀𝑞−𝑉𝑞
 ] 𝑔(𝑥,𝑦,𝑧)  

⇒ 𝐹𝑚(𝑥, 𝑦, 𝑧) = 𝑖𝐹𝑚𝑥 + 𝑗𝐹𝑚𝑦 + 𝑘𝐹𝑚𝑧                      (18)   

The minimum force (𝐹𝑚) is constant for a fluid. 

Lemma 4: Let 𝜇∇2𝑢 = 𝑛𝜏𝐹𝑚 , where the shearing force is a 
multiple of the minimum force (𝐹𝑚) due to the function of  𝑛𝜏 

(shearing force quantum number), ∀ 𝑛𝜏 ∈ ℤ. So that integrating 

both sides simultaneously will yield the exact solution of 𝑢 and its 

rate of change in ℝ+
𝑑 = {(𝑥1, 𝑥2, … , 𝑥𝑑) ∈ ℝ

𝑑: 𝑑 > 0}. 

Proof:  Let,     𝐹𝑚 = ∑ 𝐹𝑚(𝑥𝑖)
𝑑
𝑖=1 . The minimum force,  𝐹𝑚 is a 

constant for a particular fluid. 

𝜇∇2𝑢 = 𝑛𝜏𝐹𝑚 

⇒ 𝜇∑
𝜕2𝑢𝑖

𝜕𝑥𝑖
2

𝑑
𝑖=1 = 𝑛𝜏 ∑ 𝐹𝑚(𝑥𝑖)

𝑑
𝑖=1                    

{
 
 

 
 𝜇∑

𝜕2𝑢𝑖

𝜕𝑥𝑖
2

𝑑
𝑖=1 = 0, 𝑛𝜏 = 𝑜

𝜇∑
𝜕2𝑢𝑖

𝜕𝑥𝑖
2

𝑑
𝑖=1 < 0, 𝑛𝜏 < 0 

𝜇 ∑
𝜕2𝑢𝑖

𝜕𝑥𝑖
2

𝑑
𝑖=1 > 0, 𝑛𝜏  > 0 

 

⇒   ∑
𝜕2𝑢𝑖

𝜕𝑥𝑖
2

𝑑
𝑖=1 =

𝑛𝜏

𝜇
∑ 𝐹𝑚(𝑥𝑖)
𝑑
𝑖=1    

⇒
𝜕2𝑢

𝜕𝑥1
2 +

𝜕2𝑢

𝜕𝑥2
2 +⋯+

𝜕2𝑢

𝜕𝑥𝑑
2 =

𝑛𝜏

𝜇
𝐹𝑚                                     (19) 

∫ ∫ ( ∑
𝜕2𝑢𝑖

𝜕𝑥𝑖
2

𝑑

𝑖=1

) . 𝜕𝑥𝑖
𝑅𝑑𝑅𝑑

=
𝑛𝜏
𝜇
∫ ∫ 𝐹𝑚

𝑅𝑑𝑅𝑑
. 𝜕𝑥𝑖 

∫ ∫ (
𝜕2𝑢

𝜕𝑥1
2 +

𝜕2𝑢

𝜕𝑥2
2 +⋯+

𝜕2𝑢

𝜕𝑥𝑑
2)

𝑅𝑑
. 𝜕𝑥1. 𝜕𝑥2…𝜕𝑥𝑑

𝑅𝑑

=
𝑛𝜏
𝜇
∫ ∫ 𝐹𝑚

𝑅𝑑
. 𝜕𝑥1. 𝜕𝑥2…𝜕𝑥𝑑

𝑅𝑑
 

⇒ 𝑢 ≅
𝑛𝜏𝐹𝑚

𝜇
𝑢(𝑥1

𝑑−1, 𝑥2
𝑑−1, … , 𝑥𝑑

𝑑−1)                                                                                

(20) 

⇒

⌊
 
 
 
 
 
 
 
𝜕𝑢

𝜕𝑥1
𝜕𝑢

𝜕𝑥2
.
.
.
𝜕𝑢

𝜕𝑥𝑑⌋
 
 
 
 
 
 
 

≅ 

⌊
 
 
 
 
 
 
 
(𝑑−1)𝑛𝜏𝐹𝑚

𝜇
𝑢(𝑥1

𝑑−2, 𝑥2
𝑑−1, … , 𝑥𝑑

𝑑−1)

(𝑑−1)𝑛𝜏𝐹𝑚

𝜇
𝑢( 𝑥1

𝑑−1, 𝑥2
𝑑−2, … 𝑥𝑑

𝑑−1)
.
.
.

(𝑑−1)𝑛𝜏𝐹𝑚

𝜇
𝑢( 𝑥1

𝑑−1, 𝑥2
𝑑−1, … , 𝑥𝑑

𝑑−2)⌋
 
 
 
 
 
 
 

 , 

ℝ𝑑: 𝑥[0,∞]                                                              (21) 

 
Turbulence and Vorticity in Fluid 
Sudden Change in the continuum of fluid flow in the atmosphere is 
due to a differential in Pressure (P), thermal energy absorption (Υ) 
and infrared radiation absorption by the atmospheric greenhouse 
(𝜙). This leads to gusty winds, squalls, turbulence, and the 
torsioning effects of fluid molecules into spins (vortex) in the 
rational distance of a dimension in the fluid system. The thermal 
energy (Υ) absorption catalyzes the dissolution of air molecules (M) 
on a land sketch (dimension). Change in the absorption rates from 
radiant energy is accompanied by sound and a pressure difference, 
which leads to the inertial culmination of the time-dependent and 
convection acceleration, causing cracks (vortex) in mechanical 
fluids. 

Thermal Energy 
Proposition 5: The time-dependent temperature 𝛾 varies directly 

as the cube root of the weather condition to the power four (𝑤4) 

and the cube root of the frequency to the power two (ℎ2) of the 
sound produced at the formation of a vortex in turbulence. 
Proof: 
Mathematically,  

𝛾 = [𝑤4ℎ2]
1

3                                                  (22) 

Where, 𝛾 is the time-dependent temperature in [℃/𝑠]
4

3. 𝑠−
2

3     

𝑤, is the weather condition in ℃/𝑠 and  

ℎ, frequency of the sound produced at turbulence and the 
simultaneous formation of vortices, in Hertz (s-1) 

⇔ 𝛾3 = 𝑤4ℎ2 

⇒ 𝛾3 = 𝑤4 (
𝑣

𝜆
)
2
                                              (23)  

 

⇒  𝛾3 = [
𝑇

𝑡
]
4
. 𝑡−2 

⇔ 𝛾3 = [
𝑃

𝑀𝐶
]
4
. 𝑡−2                                       (24) 

Where, v is the velocity of sound produced at turbulence, 
𝜆, is the wavelength of sound, 

𝑡, is the time taken, 
T, is the temperature, 
𝑃, is the thermal power, 

𝑀, percentage mass/molecule of air within the dimension 

𝐶, specific heat capacity of air. 
 
Pressure and Radiant Flux Variable 
Proposition 6: The turbulent causing agent 𝛼 is directly 
proportional to the product of the cube root of the sudden pressure 
𝑝 and the radiant flux 𝜙 within the dimension. 
Proof: 
Mathematically, 

𝛼 = 𝜙𝑒,𝑡√𝑝
3                                                           (25) 

𝛼 = 𝜙𝑒,𝜆√𝑝
3                                                           (26) 

 
Where, 𝛼 is the turbulent agent, 

 𝜙𝑒,𝑡 , is the radiant flux in 𝑤/𝐻𝑧 (indicative of the time of crack or 

formation of vortex) 
𝜙𝑒,𝜆, is the radiant flux in 𝑤/𝑚 (indicative of the depth of the crack 

or vortex) 

⇔ 𝛼3 = 𝑝.𝜙3                                                       (27) 
 
Rational Length of the Top Air Layer 

 
 
Figure 3. 

https://dx.doi.org/10.4314/swj.v20i4.46
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Proposition 7: The rational length “𝔞” of the top air layer is the 
volume of the horizontal area covered by the crack or vortex at 
turbulence. 

⇒ 𝔞 = 𝐿 × 𝜋𝑟ℎ
2                        (28) 

where 𝐿 is the depth of the crack/vortex at the outburst 

𝑟ℎ, is the horizontal radius of the vortex or crack at the top layer. 
 
Rational distance of the dimension 
Proposition 8: The rational distance is the vertical area of the 
radius of the depth of the crack. 
Given as; 

𝜃𝜋𝑟𝑣
2                                                                  (29) 

 𝑟𝑣, is the vertical radius of the depth of turbulence 

 𝜃, is the angle of spin in rad. 
 
The logarithmic Equation for Vorticity turbulence. 
Proposition 9: The pressure Radiant (𝛼) varies directly as the 

Thermal energy (𝛾) and the cube root of the Rational distance of  

the dimension (𝜃𝜋𝑟𝑣
2). It also varies inversely as the cube root of 

the rational length  "𝔞" (𝐿 × 𝜋𝑟ℎ
2) and the Thermal energy is 

exponentially raised to the product of gravity(𝑔) and vertical radius 
(𝑟𝑣). 
Proof: 
Mathematically, 

    𝛼 ∝ 𝛾(𝜃𝜋𝑟𝑣
2)
1

3 

   𝛼 ∝
1

(𝔞𝛾𝛽)
1
3

 

⇒ 𝛼 ∝
𝛾(𝜃𝜋𝑟𝑣

2)
1
3

(𝔞𝛾𝛽)
1
3

 

⇒ 𝛼 = 𝑘.
𝛾(𝜃𝜋𝑟𝑣

2)
1
3

(𝔞𝛾𝛽)
1
3

                                                   (30) 

𝛽 = 𝑔𝑟𝑣
2 

𝑘 = 𝑑3 

𝑑 =
1

10
𝜌 

where g is acceleration due to gravity, 
K is a constant of proportionality, 
𝑑 is the  densal quantity 

𝜌, is the density of the fluid. 

⇔ 𝛼3 =
𝛾3𝑑𝜃𝜋𝑟𝑣

2

𝔞𝛾𝛽
                                                     (31) 

Re-arranging 

𝑑𝛾3

𝔞𝛾𝛽
=
𝛼3

𝜃𝜋𝑟𝑣
2 

Taking the Natural logarithm of both sides 

(3 − 𝛽)ln 𝛾 = ln𝛼3 − ln [
𝔞

𝑑𝜃𝜋𝑟𝑣
2]                                                                                          

(3 − 𝛽)ln 𝛾 = ln𝛼3 − ln [
𝐿𝑟ℎ
2

𝑑𝜃𝑟𝑣
2]                                                                                      

(32)  
(3 − 𝛽)ln 𝛾, is the thermal or mechanical energy at turbulence 

ln 𝛼3, is the pressure energy at turbulence 

ln [
𝔞

𝑑𝜃𝜋𝑟𝑣
2], is the dimension (expanse/depth|) of turbulence/vortex 

form 
 
Vorticity Transport Equation. 
Vorticity measures how fluid particles spin in a particular point in a 
continuum, due to torsional forces from angular momentum. 
Analyzing spins mathematically is done by taking the Curl ′𝜛′ of 

the velocity vector ′𝑢̅(𝑟̅)′ in 3 dimensions: 

𝜛 = ∇̅ × (

𝑢𝑥
𝑢𝑦
𝑢𝑧
) ⇒  𝜛 = ||

𝑖 𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝑢𝑥 𝑢𝑦 𝑢𝑧

|| 

𝜛 = 𝑖 (
𝜕𝑢𝑧

𝜕𝑦
−
𝜕𝑢𝑦

𝜕𝑧
) − 𝑗 (

𝜕𝑢𝑧

𝜕𝑥
−
𝜕𝑢𝑥

𝜕𝑧 
) + 𝑘 (

𝜕𝑢𝑦

𝜕𝑥
−
𝜕𝑢𝑥

𝜕𝑦
)                                                                 

(33) 
∴  The components of rotation are; 

𝜛𝑥 = (
𝜕𝑢𝑧
𝜕𝑦

−
𝜕𝑢𝑦

𝜕𝑧
) 

𝜛𝑦 = (
𝜕𝑢𝑧
𝜕𝑥

−
𝜕𝑢𝑥
𝜕𝑧 
) 

𝜛𝑧 = (
𝜕𝑢𝑦

𝜕𝑥
−
𝜕𝑢𝑥
𝜕𝑦
) 

The Curl of the Navier-Stokes equation gives the vorticity transport 
equation; 

∇̅ × {
𝜕𝑢𝑖
𝜕𝑡
+∑𝑢𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

=

𝑗

𝑓𝑖(𝑥, 𝑡) −
𝜕𝑃

𝜕𝑥𝑖
+ 𝜐Δ𝑢𝑖} 

⇒ 
𝜕𝜛𝑘

𝜕𝑡
+ 𝑢𝑗

𝜕𝜛𝑘

𝜕𝑥𝑗
= 𝜛𝑗

𝜕𝑢𝑘

𝜕𝑥𝑗
+ 𝜐

𝜕2𝜛𝑘

𝜕𝑥𝑗𝜕𝑥𝑗
+

1

𝜌2
∇ρ × ∇𝑃 + ∇ ×

1

𝜌
𝑓𝑖(𝑥, 𝑡) 

The angular momentum of the rotation is the substantial derivative 
of the Curl 

∴
𝒟𝜛𝑘

𝒟𝑡
= 𝜛𝑗

𝜕𝑢𝑘

𝜕𝑥𝑗
+ 𝛾

𝜕2𝜛𝑘

𝜕𝑥𝑗𝜕𝑥𝑗
+

1

𝜌2
∇ρ × ∇𝑃 + ∇ ×

1

𝜌
𝑓𝑖(𝑥, 𝑡)                                                                  

(34) 
Lemma 10:  Let 𝜛 = 𝑓(𝑥, 𝑦, 𝑧, 𝑡), be a function of space and 

time. Where ′𝑟′ is the radius of rotation of curl such that (0 ≤ 𝑟 ≤

∞ 𝑎𝑛𝑑 0 ≤
𝒟𝜛

𝒟𝑡
≤ ∞), the direction and magnitude of the 

resultant rotation are; ‖𝜛‖ and 𝜃𝜛. 
Proof: 

 
Figure 4 
The diagram above shows the dimensional vectors of Curl 𝜛, with 

the resultant rotation at a radius 𝑟. 
𝜛 = 𝑓(𝑥, 𝑦, 𝑧, 𝑡) 
Change in vorticity (curl) 

⇒ 𝛿𝜛 = 𝛿𝑥
𝜕𝜛

𝜕𝑥
+ 𝛿𝑦

𝜕𝜛

𝜕𝑦
+ 𝛿𝑧

𝜕𝜛

𝜕𝑧
+ 𝛿𝑡

𝜕𝜛

𝜕𝑡
 

Time rate of change in vorticity (curl) 

⇒ 
𝛿𝜛

𝛿𝑡
=
𝛿𝑥

𝛿𝑡
.
𝜕𝜛

𝜕𝑥
+
𝛿𝑦

𝛿𝑡
.
𝜕𝜛

𝜕𝑦
+
𝛿𝑧

𝛿𝑡
.
𝜕𝜛

𝜕𝑧
+
𝛿𝑡

𝛿𝑡
.
𝜕𝜛

𝜕𝑡
 

⇒
𝑑𝜛

𝑑𝑡
=
𝜕𝑥

𝜕𝑡
.
𝜕𝜛

𝜕𝑥
+
𝜕𝑦

𝜕𝑡
.
𝜕𝜛

𝜕𝑦
+
𝜕𝑧

𝜕𝑡
.
𝜕𝜛

𝜕𝑧
+
𝜕𝜛

𝜕𝑡
 

As 𝛿𝑡 → 0 

https://dx.doi.org/10.4314/swj.v20i4.46
http://www.scienceworldjournal.org/
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⇒
𝑑𝜛

𝑑𝑡
= 𝑢

𝜕𝜛

𝜕𝑥
+ 𝑣

𝜕𝜛

𝜕𝑦
+ 𝑤

𝜕𝜛

𝜕𝑧
+
𝜕𝜛

𝜕𝑡
 

⇒
𝜕𝜛

𝜕𝑡
=
𝑑𝜛

𝑑𝑡
− {𝑢

𝜕𝜛

𝜕𝑥
+ 𝑣

𝜕𝜛

𝜕𝑦
+ 𝑤

𝜕𝜛

𝜕𝑧
}                                                                                                     

(35) 
 

 
Figure 5 
 
The angular acceleration ′𝛼′ for a fluid particle spinning, 

𝛼 =
𝑑𝜛

𝑑𝑡
=
𝜛1 −𝜛0
𝑡1 − 𝑡0

 

Linear velocity = radius of rotation ‘𝑟 ′ ×  𝜛 

⇒ 𝜛 =
𝑣

𝑟
 

∴ 𝛼 =
𝑑𝜛

𝑑𝑡
=
𝜛1 −𝜛0
𝑡1 − 𝑡0

=
1

𝑟
.
𝑣1 + 𝑣2
𝑡1 − 𝑡0

 

⇒ 𝛼 =
1

𝑟
. 𝑎                                                                                                                                                  

Where 𝑎 is linear acceleration  

⇒
𝜕𝜛

𝜕𝑡
=
𝑎

𝑟
− {𝑢

𝜕𝜛

𝜕𝑥
+ 𝑣

𝜕𝜛

𝜕𝑦
+ 𝑤

𝜕𝜛

𝜕𝑧
}                                                                                                       

Recall from (2) 

𝑎𝑥 =
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
 

⇒
𝜕𝜛

𝜕𝑡
=
1

𝑟
{
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
}

− {𝑢
𝜕𝜛

𝜕𝑥
+ 𝑣

𝜕𝜛

𝜕𝑦
+ 𝑤

𝜕𝜛

𝜕𝑧
} 

⇒
𝜕𝜛

𝜕𝑡
=
1

𝑟

𝜕𝑢

𝜕𝑡
+ 𝑢 (

1

𝑟

𝜕𝑢

𝜕𝑥
−
𝜕𝜛

𝜕𝑥
) + 𝑣 (

1

𝑟

𝜕𝑢

𝜕𝑦
−
𝜕𝜛

𝜕𝑦
) + 𝑤 (

1

𝑟

𝜕𝑢

𝜕𝑧
−

𝜕𝜛

𝜕𝑧
)                                                    (36)   

Substituting equation (37) into (34) the substantial derivative of 

curl, ′
𝒟𝜛

𝒟𝑡
′, gives the vorticity transport equation as; 

𝒟𝜛

𝒟𝑡
=
1

𝑟
{
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
} = (𝜛. ∇̅)𝑢 +  𝜐∇2𝜛 

⇒
1

𝑟
{
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
}

= 𝜛𝑥
𝜕𝑢

𝜕𝑥
+ 𝜛𝑦

𝜕𝑢

𝜕𝑦
+𝜛𝑧

𝜕𝑢

𝜕𝑧

+ 𝜐 {
𝜕2𝜛

𝜕𝑥2
+
𝜕2𝜛

𝜕𝑦2
+
𝜕2𝜛

𝜕𝑧2
} 

In vector form; 
𝜌

𝑟
{
𝜕𝑢

𝜕𝑡
+ 𝑢̅∇𝑢} = (𝜛. ∇̅)𝑢 +  𝑢∇2𝜛                                                                                                     

(37) 
Where 𝑟 is the radius covered by the vortex. 
 
The magnitude and direction of curl on the resultant direction of 
rotation, from the diagram above is given by: 

‖𝜛‖2 = ‖
𝜕𝑢𝑧

𝜕𝑦
−
𝜕𝑢𝑦

𝜕𝑧
‖
2

− ‖
𝜕𝑢𝑧

𝜕𝑥
−
𝜕𝑢𝑥

𝜕𝑧 
‖
2
− ‖

𝜕𝑢𝑦

𝜕𝑥
−
𝜕𝑢𝑥

𝜕𝑦
‖
2

                                                             

(38) 

𝜃𝜛 = tan
−1 {

𝜕𝑢𝑧
𝜕𝑦
−
𝜕𝑢𝑦

𝜕𝑧

𝜕𝑢𝑧
𝜕𝑥
−
𝜕𝑢𝑥
𝜕𝑧 

}                                                                                                                        

(39) 
The direction of Curl in 3-dimensions from the diagram above; 

𝜃𝑖 = cos
−1 {

(
𝜕𝑢𝑧

𝜕𝑦
−
𝜕𝑢𝑦

𝜕𝑧
)

‖𝜛‖
} 

𝜃𝑗 = cos
−1 {

(
𝜕𝑢𝑧

𝜕𝑥
−
𝜕𝑢𝑥

𝜕𝑧 
)

‖𝜛‖
} 

𝜃𝑘 = cos
−1 {

(
𝜕𝑢𝑦

𝜕𝑥
−
𝜕𝑢𝑥

𝜕𝑦
)

‖𝜛‖
} 

 
The Natural Logarithm of the Vorticity Transport Equation. 
Formation of vortices (spins) in a turbulent flow of fluid follows a 
mathematical rhythm as shown below; 
From (38) 
𝜌

𝑟
{
𝜕𝑢

𝜕𝑡
+ 𝑢̅∇𝑢} = (𝜛. ∇̅)𝑢 +  𝑢∇2𝜛                                                                                    

Where 𝑟 is the radius covered by the vortex. 

⇒ 
1

𝑟
=

1

𝜌{
𝜕𝑢

𝜕𝑡
+𝑢̅∇𝑢}

{(𝜛. ∇̅)𝑢 +  𝑢∇2𝜛}                                                                                   

⇒ 𝑟 =
𝜌

{(𝜛.∇̅)𝑢+ 𝑢∇2𝜛}
{
𝜕𝑢

𝜕𝑡
+ 𝑢̅∇𝑢}                                                                                      

(40) 
𝑟 = 𝑟ℎ, radius of vortex, from (28) 
Substituting (40) into (32) to give the Natural logarithmic function of 
vorticity transport equation 

⇒ (3 − 𝛽)ln 𝛾 = ln𝛼3 − ln{
{

𝜌

{(𝜛.∇̅)𝑢+ 𝑢∇2𝜛}
{
𝜕𝑢

𝜕𝑡
+𝑢∇𝑢}}

2

𝐿

𝑑𝜃𝑟𝑣
2 }                                                            

(41) 
Where, (3 − 𝛽)ln 𝛾, is the thermal or mechanical energy at 
turbulence 

ln 𝛼3, is the pressure energy at turbulence 

ln {
{

𝜌

{(𝜛.∇̅)𝑢+ 𝑢∇2𝜛}
{
𝜕𝑢

𝜕𝑡
+𝑢∇𝑢}}

2

𝐿

𝑑𝜃𝑟𝑣
2 }, contains the Angular momentum, 

vortex stretching term, rotational effect, and dimension 
(expanse/depth|) of the vortex formed 
 

⇒ 𝛾(3−𝛽) =
𝛼3𝑑𝜃𝑟𝑣

2

{
𝜌

{(𝜛.∇̅)𝑢+ 𝑢∇2𝜛}
{
𝜕𝑢

𝜕𝑡
+𝑢∇𝑢}}

2

𝐿

 

⇒ 𝛾(3−𝛽) = 𝛼3𝑑𝜃𝑟𝑣
2 {{

(𝜛.∇̅)𝑢+ 𝑢∇2𝜛

𝜌{
𝜕𝑢

𝜕𝑡
+𝑢∇𝑢}𝐿

}}

2

                                                                                   

⇒ 𝛾(3−𝛽)𝐿𝜌 {
𝜕𝑢

𝜕𝑡
+ 𝑢̅∇𝑢}

2
= 𝛼3𝑑𝜃𝑟𝑣

2{(𝜛. ∇̅)𝑢 +  𝑢∇2𝜛}2                                                    

(42) 
 
Wavelength and Frequency of Vortex Energy. 
The pressure energy stimulating the molecules of a fluid into 
turbulent spins during the formation of vortices and cracks 
simultaneously travels as a waveform, using the fluid molecules as 

https://dx.doi.org/10.4314/swj.v20i4.46
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a material medium.  
 
Proposition 11: The wavelength (w) varies directly as the product 
of pressure (P) and time (T), and inversely as the square of the 
volume (v) occupied by the fluid molecules. 
Proof: 

𝑤𝛼
𝑃𝑇

𝑉2
 

𝑤 = 𝑘.
𝑃𝑇

𝑉2
 , =

1

𝑚
 , 𝑚 is the mass per units 𝑘𝑔𝑚−8𝑠−1 

 𝑤 =
𝑃𝑇

𝑚𝑉2
                                                                                                                                           

(43) 
 
Proposition 12: The momentum of the force causing the 
vortex/crack is equal to the imparted momentum on the fluid 
molecules. 
Proof: 
The momentum of the causative force = 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 × 𝑇𝑖𝑚𝑒 ×
𝐴𝑟𝑒𝑎 = 𝑃𝑇𝜋𝑟2 
The imparted momentum  = 𝑚𝑎𝑠𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡𝑠 ×
𝑣𝑜𝑙𝑢𝑚𝑒 𝑐𝑢𝑏𝑒 = 𝑚𝑉3 

⇒  𝑃𝑇𝜋𝑟2 = 𝑚𝑉3 

⇒  𝑃𝑇𝜋𝑟2 −𝑚𝑉3 = 0 

∴ 𝑃𝑇𝜋𝑟2 −𝑚𝑉3 = 𝝋                                                                                                                   
(44) 
 
Proposition 13: The minimum volume (v) occupied by the air 
molecules is directly proportional to the wavelength (w) of the 
vibration of the molecules. 
Proof: 
⇒ 𝑣 𝛼 𝑤 
⇒ 𝑣 =  𝑘𝑤, where 𝑘 is the unit area (A)  

⇒ 𝑣 =  𝐴𝑤 

⇒ 𝑣 =  𝑤
∆𝑣

∆𝑣
. 1𝑚2 

⇒ 𝑣∆𝑣 =  𝑤∆𝑣 
Integrating 

∫ 𝑣∆𝑣 =
𝑣𝛼

−𝑣0

∫ 𝑤∆𝑣
𝑣𝛼

−𝑣0

 

⇒ 
𝑣𝛼

𝑣0
=
𝑤+𝑣

𝑤−𝑣
 

⇒ 𝑉 = 
𝑣𝛼

𝑣0
=
𝑤+𝑣

𝑤−𝑣
 , is the dimensionless wavelength-volume ratio.                                      

(45) 
The minimum pressure required to initiate the motion causing the 
cracks; 

𝑃 =
𝛾𝑉

𝐴
, 𝛾 = Specific weight, 𝑉 = wavelength-volume ratio 

⇒ 𝑃 =
𝛾

𝐴
[
𝑤+𝑣

𝑤−𝑣
] 

Substituting P from (46) 

⇒ 𝑚𝑉3 = 𝑇𝛾 [
𝑤+𝑣

𝑤−𝑣
] 

⇒ 𝑚𝑉3[𝑤 − 𝑣] = 𝑇𝛾[𝑤 + 𝑣] 
Substituting 𝑤 from (45) 
𝐾𝑃𝑇

𝑉
− 𝐾𝑚𝑣2 =

𝐾𝛾𝑇

𝑉2
[𝑤 + 𝑣] 

1

𝑉
 𝛼 𝑃,          (Boyle’s law) 

𝜎 =
𝐹

𝐿
𝐾 = 1 (surface tension of fluid) 

⇒ 𝑃2𝑇 − 𝜎𝑚𝑣2 =
𝜎𝛾𝑇

𝑉2
[𝑤 + 𝑣] 

⇒ 𝑃2𝑇 − 𝜎𝑚𝑣2 = 𝑃2𝑇𝑓[𝑤 + 𝑣] 

⇒ 𝑃2 =
𝑚𝑣2𝜎

[𝑇 − 𝑓𝑇2(𝑤 + 𝑣)]
 

⇒ 𝑃 = √
𝑚𝑣2𝜎

[𝑇−𝑓𝑇2(𝑤+𝑣)]
                                                                                                                          

(46) 
𝑓, is the frequency of vortex energy. 
Substituting (46) into (42) to give the Natural logarithmic function of 
the vorticity transport equation 
Recall, from (27)  

𝛼3 = 𝑝.𝜙3,   

⇒ (3 − 𝛽)ln 𝛾 = ln[𝑝. 𝜙3] −

ln {
{

𝜌

{(𝜛.∇̅)𝑢+ 𝑢∇2𝜛}
{
𝜕𝑢

𝜕𝑡
+𝑢∇𝑢}}

2

𝐿

𝑑𝜃𝑟𝑣
2 }     

⇒ (3 − 𝛽)ln 𝛾 = ln [𝜙3√
𝑚𝑣2𝜎

[𝑇−𝑓𝑇2(𝑤+𝑣)]
] −

ln {
{

𝜌

{(𝜛.∇̅)𝑢+ 𝑢∇2𝜛}
{
𝜕𝑢

𝜕𝑡
+𝑢∇𝑢}}

2

𝐿

𝑑𝜃𝑟𝑣
2 }                                    (47)   

Where, (3 − 𝛽)ln 𝛾, is the thermal or mechanical energy of the 
vortex formed at turbulence 

ln ln [𝜙3√
𝑚𝑣2𝜎

[𝑇−𝑓𝑇2(𝑤+𝑣)]
], is the pressure/vibrational energy of 

the vortex formed at turbulence 

ln {
{

𝜌

{(𝜛.∇̅)𝑢+ 𝑢∇2𝜛}
{
𝜕𝑢

𝜕𝑡
+𝑢∇𝑢}}

2

𝐿

𝑑𝜃𝑟𝑣
2 }, contains the Angular momentum, 

vortex stretching term, rotational effect, and dimension 
(expanse/depth|) of the vortex formed 
 

⇒ 𝛾(3−𝛽) =
[𝜙3√

𝑚𝑣2𝜎

[𝑇−𝑓𝑇2(𝑤+𝑣)]
]𝑑𝜃𝑟𝑣

2

{
𝜌

{(𝜛.∇̅)𝑢+ 𝑢∇2𝜛}
{
𝜕𝑢

𝜕𝑡
+𝑢∇𝑢}}

2

𝐿

 

⇒ 𝛾(3−𝛽) = [𝜙3√
𝑚𝑣2𝜎

[𝑇−𝑓𝑇2(𝑤+𝑣)]
] 𝑑𝜃𝑟𝑣

2 {{
(𝜛.∇̅)𝑢+ 𝑢∇2𝜛

𝜌{
𝜕𝑢

𝜕𝑡
+𝑢∇𝑢}𝐿

}}

2

                                                                                   

⇒ 𝛾(3−𝛽)𝐿𝜌 {
𝜕𝑢

𝜕𝑡
+ 𝑢̅∇𝑢}

2
=

[𝜙3√
𝑚𝑣2𝜎

[𝑇−𝑓𝑇2(𝑤+𝑣)]
] 𝑑𝜃𝑟𝑣

2{(𝜛. ∇̅)𝑢 +  𝑢∇2𝜛}2                            

(48) 
 
Navier-Stokes Equation as a function of quantum integrals. 
The Navier-Stokes equation can be expressed as functions of 
quantum numbers, as stated earlier from “Lemma 1”. As a result, 
the following assumption is taken; 
 The momentum force, pressure force, and shear forces are 
multiples of a minimum force acting on a quantum fluid molecule 
(differential element) moving around its volume mass under gravity. 
The multiples are integral values (quantum numbers); 𝑛𝐵 (for 

momentum force), 𝑛𝑃 (pressure force) and 𝑛𝜏 (Shear force). 

Where, 𝑛𝐵, 𝑛𝑃, 𝑛𝜏 = 0,1,2,3,… 

⇒ 
1

𝐹𝑚
{ 
𝜕𝑢𝑖

𝜕𝑡
+ ∑ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
=𝑗 𝑓𝑖(𝑥, 𝑡) −

𝜕𝑃

𝜕𝑥𝑖
+ 𝜈Δ𝑢𝑖}                                                 

(49) 

https://dx.doi.org/10.4314/swj.v20i4.46
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⇔
1

𝐹𝑚
{𝜌

𝒟𝑢

𝒟𝑡
= −∇𝑃 + 𝜇∇2𝑢 }  

⇔ 𝐹0 {𝜌
𝒟𝑢

𝒟𝑡
= −∇𝑃 + 𝜇∇2𝑢 }                                                                            

(50) 
⇔ 𝑛𝐵 = −𝑛𝑃 + 𝑛𝜏                                                                                             
(51) 

Where, 𝐹0 is the reciprocal of the quantum force: 𝐹0 =
1

𝐹𝑚
 

 𝑛𝐵, is the momentum force quantum number 

𝑛𝑃, is the pressure force quantum number, and 
𝑛𝜏, is the shear force quantum number. 
The momentum force is a multiple of the minimum force, given as 
the product of the minimum force 𝐹𝑚 and the momentum quantum 

number 𝑛𝐵. 

⇒ 𝜌
𝒟𝑢

𝒟𝑡
= 𝐹𝑚 × 𝑛𝐵                                                                                                

(52) 

⇒ 
1

𝐹𝑚
× 𝜌

𝒟𝑢

𝒟𝑡
= 𝑛𝐵 

⇒ 𝐹0 × 𝜌
𝒟𝑢

𝒟𝑡
= 𝑛𝐵  

The graph of 𝑛𝐵/𝜌
𝒟𝑢

𝒟𝑡
 is linear. 

 

Figure 6  Graph of 𝒏𝑩/𝝆
𝓓𝒖

𝓓𝒕
 

⇒ 
∆𝑛𝐵

∆𝜌
𝒟𝑢

𝒟𝑡

= 𝐹0, the slope of the graph is the quantum force (𝐹0).  

⇒ ∆𝑛𝐵 = 𝐹0∆𝜌
𝒟𝑢

𝒟𝑡
 

Integrating, 

∫∆𝑛𝐵 = ∫𝐹0∆𝜌
𝒟𝑢

𝒟𝑡
 

⇔   

∫𝑑𝑛𝐵 = ∫𝐹0𝑑𝜌
𝒟𝑢

𝒟𝑡
 

As, ∆𝜌
𝒟𝑢

𝒟𝑡
→ 0 and ∆𝑛𝐵 → 0 

⇒ 𝑛𝐵 = 𝐹0. 𝜌
𝒟𝑢

𝒟𝑡
+ 𝐶𝐵, 

⇒ 𝜌
𝒟𝑢

𝒟𝑡
=

1

𝐹0
[𝑛𝐵 − 𝐶𝐵]                                                                                                      

(53) 
Similarly; 
For pressure force, 
The graph of 𝑛𝑃/∇𝑃 is linear. 

 
Figure 7     Graph of 𝒏𝒑/𝛁𝑷 

⇒ −𝑛𝑝 = −𝐹0. ∇𝑃 + 𝐶𝑃 

⇒ −∇𝑃 = −
1

𝐹0
[𝑛𝑃 + 𝐶𝑃]                                                                                                     

(54) 
Also, 
Shearing force, 

The graph of 𝑛𝜏/𝜇∇
2𝑢 is linear. 

 
Figure 8 Graph of 𝒏𝝉/𝝁𝛁

𝟐𝒖 
 

⇒ 𝑛𝜏 = 𝐹0. 𝜇∇
2𝑢 + 𝐶𝜏 

⇒ 𝜇∇2𝑢 =
1

𝐹0
[𝑛𝜏 − 𝐶𝜏] 

⇒ ∇2𝑢 =
1

𝜇𝐹0
[𝑛𝜏 − 𝐶𝜏]                                                                                                              

(55) 
Substituting these values from (53), (54) and (55) into equation (9) 
1

𝐹0
[𝑛𝐵 − 𝐶𝐵] = −

1

𝐹0
[𝑛𝑃 + 𝐶𝑃] +

1

𝐹0
[𝑛𝜏 − 𝐶𝜏]                                                                           

(56)  
Also, from (9): 

𝜌
𝒟𝑢

𝒟𝑡
− [−∇𝑃 + 𝜇∇2𝑢] = 0 

⇒
1

𝐹𝑞
[𝜌
𝒟𝑢

𝒟𝑡
− [−∇𝑃 + 𝜇∇2𝑢] = 0] 

⇒ 𝑛𝐵 − [−𝑛𝑃 + 𝑛𝜏] = 0 
⇔ 𝑛𝐵 − [−𝑛𝑃 + 𝑛𝜏] = 𝑛                                                                                                         
(57)  
where “n” is the general quantum number for the N-S equation. 

⇒ 
∆𝑛

∆𝜌
𝒟𝑢

𝒟𝑡
−[−∇𝑃+𝜇∇2𝑢]

= 𝐹0, where 𝐹0 is the slope of the graph 

n/ 𝜌
𝒟𝑢

𝒟𝑡
− [−∇𝑃 + 𝜇∇2𝑢]  

https://dx.doi.org/10.4314/swj.v20i4.46
http://www.scienceworldjournal.org/
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Integrating, 

⇒ ∫∆𝑛 = ∫𝐹0∆𝜌
𝒟𝑢

𝒟𝑡
− [−∇𝑃 + 𝜇∇2𝑢], let 𝜌

𝒟𝑢

𝒟𝑡
− [−∇𝑃 +

𝜇∇2𝑢] = 𝜑 

⇒ ∫∆𝑛 = ∫𝐹0∆𝜑 

⇒ 𝑛 = 𝐹0 𝜑 + 𝑐  

⇒  𝜑 =
1

𝐹0
(𝑛 − 𝑐)                                                                                                                    

(58) 

⇒ 𝜌
𝒟𝑢

𝒟𝑡
− [−∇𝑃 + 𝜇∇2𝑢] =

1

𝐹0
(𝑛 − 𝑐) 

∴ Equation (56) 

⇔ 
1

𝐹0
[𝑛𝐵 − 𝐶𝐵] − {−

1

𝐹0
[𝑛𝑃 + 𝐶𝑃] +

1

𝐹0
[𝑛𝜏 − 𝐶𝜏]} =

1

𝐹0
(𝑛 − 𝑐)                                          (59)     

New form of the N-S equation. 
   
For a fluid system at equilibrium; 

𝜌
𝒟𝑢

𝒟𝑡
− [−∇𝑃 + 𝜇∇2𝑢] = 0, at equilibrium, where 𝜌

𝒟𝑢

𝒟𝑡
=

[−∇𝑃 + 𝜇∇2𝑢] 

⇒
1

𝐹0
[𝑛𝐵 − 𝐶𝐵] − {−

1

𝐹0
[𝑛𝑃 + 𝐶𝑃] +

1

𝐹0
[𝑛𝜏 − 𝐶𝜏]} = 0                                                        

(60) 

There will be positive values for “n” and "𝝆
𝓓𝒖

𝓓𝒕
− [−𝛁𝑷 +

𝝁𝛁𝟐𝒖]” . 

The graph of n against 𝝆
𝓓𝒖

𝓓𝒕
− [−𝛁𝑷 + 𝝁𝛁𝟐𝒖], is shown below. 

 

Figure 9   Graph of 𝒏/𝝆
𝓓𝒖

𝓓𝒕
− [−𝛁𝑷 + 𝝁𝛁𝟐𝒖] 

 
This shift, from 𝑛 = 0 to 𝑛 > 0 leads from equilibrium to 
harmonization or smoothness of the fluid molecules and the 
parameters in the flow field. The greater the value of n the smoother 
the fluid. 
Conversely: 
For a non-equilibrium fluid system; 

When, 𝜌
𝒟𝑢

𝒟𝑡
< [−∇𝑃 + 𝜇∇2𝑢], we have a non-equilibrium fluid 

system. 

⇒
1

𝐹0
[𝑛𝐵 − 𝐶𝐵] − {−

1

𝐹0
[𝑛𝑃 + 𝐶𝑃] +

1

𝐹0
[𝑛𝜏 − 𝐶𝜏]} < 0 

There will be negative values for “n” and "𝝆
𝓓𝒖

𝓓𝒕
− [−𝛁𝑷 +

𝝁𝛁𝟐𝒖]” . 

The graph of n against 𝝆
𝓓𝒖

𝓓𝒕
− [−𝛁𝑷 + 𝝁𝛁𝟐𝒖], is shown below. 

 

Figure 10    Graph of −𝒏/𝝆
𝓓𝒖

𝓓𝒕
− [−𝛁𝑷+ 𝝁𝛁𝟐𝒖] 

This shift from the equilibrium of the fluid from 𝑛 = 0 to 𝑛 < 0 
leads to an outburst whose intensity (chaos) increases as you go 
down the negative axis. 
 
Solutions to the parameters in the linear and non-linear terms 

of the Navier-Stokes Equation on Torus ℝ𝟐/ℤ𝟐. 
The shear force divergence as a linear term with its solution given 
in Lemma 4, due to internal friction (viscosity) in a fluid is integrated 

on Torus ℝ𝟐/ℤ𝟐, yielding the solution to the divergence of velocity 

𝑢 in 2-dimensions. Substituting the solution of the divergence of 𝑢, 

into the non-linear term yield the solutions of; 𝑣, local acceleration, 
convective acceleration and pressure gradient. The solutions yield 
the subsequent graphs, topology and vorticity transport equation. 
Considering the linear term from “Lemma 4”:  

𝜇∇2𝑢 = 𝜇 (
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
) =

1

𝐹0
[𝑛𝜏 − 𝐶𝜏]                                                                  

(61) 

  ⇒ 
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
=

1

𝜇𝐹0
[𝑛𝜏 − 𝐶𝜏] 

⇒
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
=

1

𝜇𝐹0
[𝑛𝜏 − 𝐶𝜏]                                                                    in 

2-dimension. 

As 𝜕𝑧 → ∞,
𝜕2𝑢

𝜕𝑧2
→ 0 

Integrating, 

∬(
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
) 𝜕𝑥𝜕𝑦 = ∬

1

𝜇𝐹0
[𝑛𝜏 − 𝐶𝜏] 𝜕𝑥𝜕𝑦 

As, 𝜕𝑥 ⟶ 0, 𝜕𝑦 ⟶ 0  

⇒ 𝑦
𝜕𝑢

𝜕𝑥
+ 𝑥

𝜕𝑢

𝜕𝑦
=

𝑥𝑦

𝜇𝐹0
[𝑛𝜏 − 𝐶𝜏] + 𝑐𝑥𝑦 + 𝑐𝑦,                                                

𝑎𝑡 𝑥 = 0, 𝑦 = 0
𝑢 = 𝑜, 𝑐𝑦 = 0

} 

⇒ 𝑐𝑥 =
𝜕𝑢

𝜕𝑥
+
𝑙

ℎ

𝜕𝑢

𝜕𝑦
−
𝑥𝑦

𝜇𝐹0
[𝑛𝜏 − 𝐶𝜏] ,                                                      

𝑎𝑡 𝑥 = 𝑙, 𝑎𝑛𝑑 𝑦 = ℎ} 

⇒  𝑦
𝜕𝑢

𝜕𝑥
+ 𝑥

𝜕𝑢

𝜕𝑦
=
𝑥𝑦

𝜇𝐹0
[𝑛𝜏 − 𝐶𝜏]

+ [
𝜕𝑢

𝜕𝑥
+
𝑙

ℎ

𝜕𝑢

𝜕𝑦
−
𝑥𝑦

𝜇𝐹0
[𝑛𝜏 − 𝐶𝜏] ] 𝑦 

⇒
𝜕𝑢

𝜕𝑦
=

𝑦[𝑥−
𝑙

𝑦
]

𝜇𝐹0[𝑥−
𝑙

ℎ
]
[𝑛𝜏 − 𝐶𝜏]                                                                                                     

(62) 

https://dx.doi.org/10.4314/swj.v20i4.46
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Figure 11          Graph of  
𝝏𝒖

𝝏𝒚
/𝒚 

Similarly, 

𝜕𝑢

𝜕𝑥
=
𝑥 [𝑦 −

ℎ

𝑥
]

𝜇𝐹0 [𝑦 −
ℎ

𝑙
]
[𝑛𝜏 − 𝐶𝜏] 

 

 

Figure 12 Graph of  
𝝏𝒖

𝝏𝒚
/𝒙 

Let, 𝜀𝑦 =
𝑦[𝑥−

𝑙

𝑦
]

𝜇𝐹0[𝑥−
𝑙

ℎ
]
, ⇒

𝜕𝑢

𝜕𝑦
= 𝜀𝑦[𝑛𝜏 − 𝐶𝜏]                                                                         

(63) 

𝜀𝑥 =
𝑥[𝑦−

ℎ

𝑥
]

𝜇𝐹0[𝑦−
ℎ

𝑙
]
, ⇒

𝜕𝑢

𝜕𝑥
= 𝜀𝑥[𝑛𝜏 − 𝐶𝜏]                                                                                

(64) 
Integrating (64), 

∫𝜕𝑢 = ∫ 𝜀𝑥[𝑛𝜏 − 𝐶𝜏]𝜕𝑥
𝑥

0

 

𝑢 = 𝑥𝜀𝑥[𝑛𝜏 − 𝐶𝜏]                                                                                                            
(65) 

 
Figure 13 Graph of  𝒖/𝒙 
Similarly, 

𝑢 = 𝑦𝜀𝑦[𝑛𝜏 − 𝐶𝜏]                                                                                                            

(66) 

 
Figure 14 Graph of  𝒖/𝒚 𝒊𝒏 𝟐𝑫  & 𝒖/𝒙, 𝒚 𝒊𝒏 𝟑𝑫 
 

                   
Figure 15   Graph of  𝑢/𝑦 showing the topology of the flow  

https://dx.doi.org/10.4314/swj.v20i4.46
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Velocities in the non-linear term and the divergence of 

Pressure on Torus ℝ𝟐/ℤ𝟐. 

𝜌
𝒟𝑢

𝒟𝑡
=

1

𝐹0
(𝑛𝐵 − 𝐶𝐵), from equation (53) 

⇒ 𝜌 [
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
] =

1

𝐹0
(𝑛𝐵 − 𝐶𝐵) 

⇒ [
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
] =

1

 𝜌𝐹0
(𝑛𝐵 − 𝐶𝐵) 

As 𝜕𝑧 ⟶ ∞, 
𝜕𝑢

𝜕𝑧
 ⟶ 0 

⇒ [
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
] =

1

 𝜌𝐹0
(𝑛𝐵 − 𝐶𝐵) 

Substituting for  
𝜕𝑢

𝜕𝑥
 𝑎𝑛𝑑 

𝜕𝑢

𝜕𝑦
 

𝜕𝑢

𝜕𝑡
+ 𝑢𝜀𝑥[𝑛𝜏 − 𝐶𝜏] + 𝑣𝜀𝑦[𝑛𝜏 − 𝐶𝜏] =

1

 𝜌𝐹0
(𝑛𝐵 − 𝐶𝐵) 

⇒
𝜕𝑢

𝜕𝑡
+ [𝑢𝜀𝑥 + 𝑣𝜀𝑦][𝑛𝜏 − 𝐶𝜏] =

1

 𝜌𝐹0
(𝑛𝐵 − 𝐶𝐵) 

⇒ [𝑢𝜀𝑥 + 𝑣𝜀𝑦][𝑛𝜏 − 𝐶𝜏] =
1

 𝜌𝐹0
(𝑛𝐵 − 𝐶𝐵) −

𝜕𝑢

𝜕𝑡
 

⇒ 𝑢𝜀𝑥 + 𝑣𝜀𝑦 =
(𝑛𝐵−𝐶𝐵)

 𝜌𝐹0[𝑛𝜏−𝐶𝜏]
−

1

[𝑛𝜏−𝐶𝜏]
.
𝜕𝑢

𝜕𝑡
 

⇒ 𝑣 =
(𝑛𝐵 − 𝐶𝐵)

𝜀𝑦 𝜌𝐹0[𝑛𝜏 − 𝐶𝜏]
−

1

𝜀𝑦[𝑛𝜏 − 𝐶𝜏]
.
𝜕𝑢

𝜕𝑡
− 𝑢

𝜀𝑥
𝜀𝑦

 

⇒ 𝑣 =
1

2
{

1

𝜀𝑦 𝜌𝐹0
[
𝑛𝐵−𝐶𝐵

𝑛𝜏−𝐶𝜏
] − 𝑢

𝜀𝑥

𝜀𝑦
} 

⇒ 𝑣 =
1

2
{

1

𝜀𝑦 𝜌𝐹0
[
𝑛𝐵−𝐶𝐵

𝑛𝜏−𝐶𝜏
] − 𝑦𝜀𝑥[𝑛𝜏 − 𝐶𝜏]}                                                                            

(67) 

 
Figure 16   Graph of  𝒗/𝜺𝒙 & 𝒗/𝜺𝒚 

 
Figure 17 Graph of  𝒗/𝜺𝒙 & 𝜺𝒚 𝒊𝒏 𝟑𝑫 

 

For steady flow 
𝜕𝑢

𝜕𝑡
= 0 

∴  𝑣 = {
1

𝜀𝑦 𝜌𝐹0
[
𝑛𝐵−𝐶𝐵

𝑛𝜏−𝐶𝜏
] − 𝑢

𝜀𝑥

𝜀𝑦
} = {

1

𝜀𝑦 𝜌𝐹0
[
𝑛𝐵−𝐶𝐵

𝑛𝜏−𝐶𝜏
] − 𝑦𝜀𝑥[𝑛𝜏 −

𝐶𝜏]}                                              (68) 

 
Figure 18 Graph of  𝒗/𝜺𝒙 & 𝒗/𝜺𝒚 

 
From equations 56 and 54 

−∇𝑃 = −
1

𝐹0
[𝑛𝑃 + 𝐶𝑃] =

1

𝐹0
[𝑛𝐵 − 𝐶𝐵] −

1

𝐹0
[𝑛𝜏 − 𝐶𝜏] 

⇒ −
𝜕𝑝

𝜕𝑥
= 𝜌 [

𝜕𝑢

𝜕𝑡
+ [𝑢𝜀𝑥 + 𝑣𝜀𝑦][𝑛𝜏 − 𝐶𝜏]] −

1

𝐹0
[𝑛𝜏 − 𝐶𝜏],    

ℝ𝑑: 𝑥[0,∞], 𝑡 > 0 

⇒ −
𝜕𝑝

𝜕𝑥
= 𝜌

𝜕𝑢

𝜕𝑡
+ [𝑛𝜏 − 𝐶𝜏] [𝜌[𝑢𝜀𝑥 + 𝑣𝜀𝑦] −

1

𝐹0
]                                                                    

(69) 

For a steady flow, 
𝜕𝑢

𝜕𝑡
= 0 

https://dx.doi.org/10.4314/swj.v20i4.46
http://www.scienceworldjournal.org/
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⇒ −
𝜕𝑝

𝜕𝑥
= [𝑛𝜏 − 𝐶𝜏] [𝜌[𝑢𝜀𝑥 + 𝑣𝜀𝑦] −

1

𝐹0
]                                                                                

(70) 
For a steady, laminar and fully developed flow  

[𝑢𝜀𝑥 + 𝑣𝜀𝑦] = 0 

⇒ −
𝜕𝑝

𝜕𝑥
= [𝑛𝜏 − 𝐶𝜏] [−

1

𝐹0
] 

⇒ −
𝜕𝑝

𝜕𝑥
= −

1

𝐹0
[𝑛𝜏 − 𝐶𝜏]                                                                                                        

(71) 
For a Cottle flow, 

0 = −
𝜕𝑝

𝜕𝑥
+ 𝜇

𝜕2𝑢

𝜕𝑦2
 

From (55) 

𝜇
𝜕2𝑢

𝜕𝑦2
=
1

𝜇𝐹0
[𝑛𝜏 − 𝐶𝜏] 

Integrating  

∬𝜇
𝜕2𝑢

𝜕𝑦2
𝜕𝑦𝜕𝑦 = ∬

1

𝜇𝐹0
[𝑛𝜏 − 𝐶𝜏]𝜕𝑦𝜕𝑦 

𝑢 =
𝑦2

𝜇𝐹0
[𝑛𝜏 − 𝑐𝜏] + 𝑐1𝑦 + 𝑐2       

𝑎𝑡 𝑢 = 0, 𝑦 = 0
𝑐2 = 0

𝑎𝑡 𝑢 = 𝑢∝, 𝑦 = ℎ

𝑐1 =
𝑢∝

ℎ
+

ℎ

𝜇𝐹0
[𝑛𝜏 − 𝑐𝜏]}

 
 

 
 

 

As 𝜕𝑦 → 0 
Substituting; 
𝑢∝

𝑢
=
𝑦

ℎ
+

ℎ2

𝑢∝𝜇𝐹0
[−(𝑛𝜏 − 𝑐𝜏)]

𝑦

ℎ
(1 −

𝑦

ℎ
)                                                                                 

(72) 

 
Figure 19 Graph of  

𝒖∝

𝒖
/𝒚 

Recall, (71) 

−
𝜕𝑝

𝜕𝑥
= −

1

𝐹0
[𝑛𝜏 − 𝐶𝜏] 

⇒
𝑢∝

𝑢
=
𝑦

ℎ
+

ℎ2

𝑢∝𝜇
[−

𝜕𝑝

𝜕𝑥
]
𝑦

ℎ
(1 −

𝑦

ℎ
)                                                                                          

(73) 
 

 
Figure 20    Graph of  

𝒖∝

𝒖
/𝒚 

⇒
𝑢∝

𝑢
=
𝑦

ℎ
+

ℎ2

𝑢∝𝜇𝐹0
[−(𝑛𝑃 + 𝑐𝑃)]

𝑦

ℎ
(1 −

𝑦

ℎ
)                                                                          

(74) 
 
Solutions for Local and Convective Terms of Acceleration in 
the NSE. 
From (7) 

𝜌
𝒟𝑢

𝒟𝑡
= 𝜌 [

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
] 

⇒ 𝜌
𝒟𝑢

𝒟𝑡
= 𝜌 [

𝜕𝑢

𝜕𝑡
+ 𝑉⃗ ∇𝑢] 

Substituting values of the convective terms; 

𝜌
𝒟𝑢

𝒟𝑡
= 𝜌 [

𝜕𝑢

𝜕𝑡
+ 𝑦𝜀𝑥[𝑛𝜏 − 𝐶𝜏]𝑦𝜀𝑥[𝑛𝜏 − 𝐶𝜏]

+
1

2
{
1

𝜀𝑦 𝜌𝐹0
[
𝑛𝐵 − 𝐶𝐵
𝑛𝜏 − 𝐶𝜏

]

− 𝑦𝜀𝑥[𝑛𝜏 − 𝐶𝜏]} 𝑦𝜀𝑥[𝑛𝜏 − 𝐶𝜏]] 

⇒ 𝜌
𝒟𝑢

𝒟𝑡
= 𝜌 [

𝜕𝑢

𝜕𝑡
+
[𝑛𝐵−𝐶𝐵]

2𝜌𝐹0
+
𝑦𝜀𝑥𝜀𝑦[𝑛𝜏−𝐶𝜏]

2

2
]                                                                        

(75) 

⇒ 𝑉⃗ ∇𝑢 =
[𝑛𝐵−𝐶𝐵]

2𝜌𝐹0
+
𝑦𝜀𝑥𝜀𝑦[𝑛𝜏−𝐶𝜏]

2

2
,              is the convective 

acceleration.                        (76) 
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Figure  21  Graph of 𝑽⃗⃗ 𝛁𝒖 / 𝜺𝒙 & 𝑽⃗⃗ 𝛁𝒖/𝜺𝒙, 𝜺𝒚 

 
To find the local acceleration; 
From equation (69),  

𝜕𝑢

𝜕𝑡
= −

𝜕𝑝

𝜌𝜕𝑥
− [𝑛𝜏 − 𝐶𝜏] [[𝑢𝜀𝑥 + 𝑣𝜀𝑦] −

1

𝜌𝐹0
],        for  

ℝ𝑑: 𝑥[0,∞], 𝑡 > 0 

⇒
𝜕𝑢

𝜕𝑡
= −

𝜕𝑝

𝜌𝜕𝑥
− [𝑛𝜏 − 𝐶𝜏] [

[𝑛𝐵 − 𝐶𝐵]

2𝜌𝐹0[𝑛𝜏 − 𝐶𝜏]

+
𝑦𝜀𝑥𝜀𝑦[𝑛𝜏 − 𝐶𝜏]

2
−
1

𝜌𝐹0
] 

Recall. −
𝜕𝑝

𝜌𝜕𝑥
= −

1

𝐹0
[𝑛𝑃 + 𝐶𝑃] 

⇒
𝜕𝑢

𝜕𝑡
= −

1

𝜌𝐹0
[𝑛𝑃 + 𝐶𝑃] −

[𝑛𝐵 − 𝐶𝐵]

2𝜌𝐹0
−
𝑦𝜀𝑥𝜀𝑦[𝑛𝜏 − 𝐶𝜏]

2

2

+
[𝑛𝜏 − 𝐶𝜏]

𝜌𝐹0
 

⇒
𝜕𝑢

𝜕𝑡
= −

1

𝜌𝐹0
[
[𝑛𝐵−𝐶𝐵]

2
+ [𝑛𝑃 + 𝐶𝑃] − [𝑛𝜏 − 𝐶𝜏]] −

𝑦𝜀𝑥𝜀𝑦[𝑛𝜏−𝐶𝜏]
2

2
 ,    local acceleration                 (77) 

 

Figure 22 Graph of 
𝝏𝒖

𝝏𝒕
/𝒚 & 

𝝏𝒖

𝝏𝒕
/𝒙 

 

 

Figure 23: Graph of   
𝝏𝒖

𝝏𝒕
/𝜺𝒙, 𝜺𝒚 

 
Substituting (76) into (77) 

 𝜌
𝒟𝑢

𝒟𝑡
= 𝜌 [−

1

𝜌𝐹0
[
[𝑛𝐵−𝐶𝐵]

2
+ [𝑛𝑃 + 𝐶𝑃] − [𝑛𝜏 − 𝐶𝜏]] −

𝑦𝜀𝑥𝜀𝑦[𝑛𝜏−𝐶𝜏]
2

2
+
[𝑛𝐵−𝐶𝐵]

2𝜌𝐹0
+
𝑦𝜀𝑥𝜀𝑦[𝑛𝜏−𝐶𝜏]

2

2
] 

⇒ 𝜌
𝒟𝑢

𝒟𝑡
= 𝜌 [−

1

𝜌𝐹0
[[𝑛𝑃 + 𝐶𝑃] − [𝑛𝜏 − 𝐶𝜏]]] 

⇒ 𝜌
𝒟𝑢

𝒟𝑡
= −

1

𝜌𝐹0
[[𝑛𝑃 + 𝐶𝑃] − [𝑛𝜏 − 𝐶𝜏]] 

⇒ 𝜌
𝒟𝑢

𝒟𝑡
= −

1

𝜌𝐹0
[𝑛𝑃 + 𝐶𝑃] + [𝑛𝜏 − 𝐶𝜏]  

⇒ 𝜌
𝒟𝑢

𝒟𝑡
=

1

𝐹0
[𝑛𝐵 − 𝐶𝐵] = −

1

𝜌𝐹0
[𝑛𝑃 + 𝐶𝑃] + [𝑛𝜏 − 𝐶𝜏]  ⇔ 

(56) 
 
Vorticity Transport Equation 
From the solutions in (65) and (67) 
 
CURL 1: 

𝑢 =
𝑥2[𝑦−

ℎ

𝑥
]

𝜇𝐹0[𝑦−
ℎ

𝑙
]
[𝑛𝜏 − 𝐶𝜏], 

 

𝑣 =
1

2
{
𝜇𝐹0 [𝑥 −

𝑙

ℎ
]

𝑦𝜌𝐹0 [𝑥 −
𝑙

𝑦
]
. [
𝑛𝐵 − 𝐶𝐵
𝑛𝜏 − 𝐶𝜏

] −
𝑦𝑥 [𝑦 −

ℎ

𝑥
]

𝜇𝐹0 [𝑦 −
ℎ

𝑙
]
. [𝑛𝜏 − 𝐶𝜏]} 

 
𝑤 = 0 
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Figure 24 
 
  

𝜛 = ∇̅ × (
𝑢
𝑣
𝑤
) 

 𝜛 =

|

|

𝑖 𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑥2 [𝑦 −
ℎ

𝑥
]

𝜇𝐹0 [𝑦 −
ℎ

𝑙
]
[𝑛𝜏 − 𝐶𝜏]

1

2
{
𝜇𝐹0 [𝑥 −

𝑙

ℎ
]

𝑦𝜌𝐹0 [𝑥 −
𝑙

𝑦
]
. [
𝑛𝐵 − 𝐶𝐵
𝑛𝜏 − 𝐶𝜏

] −
𝑦𝑥 [𝑦 −

ℎ

𝑥
]

𝜇𝐹0 [𝑦 −
ℎ

𝑙
]
. [𝑛𝜏 − 𝐶𝜏]} 0 |

|

 

 

𝜛 = 𝑘 (
𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
) 

⇒ 𝜛 = 𝑘{
1

𝜇𝐹0 [𝑥 −
𝑙

𝑦
]
2
[𝑦 −

ℎ

𝑙
]
2
[𝑛𝜏 − 𝐶𝜏]

(
1

2
𝜇2𝐹0

2𝜌𝑦[𝑛𝐵 − 𝐶𝐵] [
−𝑙(ℎ + 𝑦)

𝑦ℎ
] [𝑦 −

ℎ

𝑙
]
2

−
1

2
𝑦2[𝑛𝜏 − 𝐶𝜏]

2 [𝑥 −
𝑙

ℎ
]
2

[𝑦 −
ℎ

𝑙
]

− ℎ𝑥2[𝑛𝜏 − 𝐶𝜏]
3 [
1

𝑥
−
1

𝑦
] [𝑥 −

𝑙

𝑦
]
2

)} 

 
∴  The components of rotation are; 

𝜛𝑥 = 0 

𝜛𝑦 = 0 

𝜛𝑧 = {
1

𝜇𝐹0[𝑥−
𝑙

𝑦
]
2
[𝑦−

ℎ

𝑙
]
2
[𝑛𝜏−𝐶𝜏]

(
1

2
𝜇2𝐹0

2𝜌𝑦[𝑛𝐵 −

𝐶𝐵] [
−𝑙(ℎ+𝑦)

𝑦ℎ
] [𝑦 −

ℎ

𝑙
]
2
−
1

2
𝑦2[𝑛𝜏 − 𝐶𝜏]

2 [𝑥 −
𝑙

ℎ
]
2
[𝑦 −

ℎ

𝑙
] −

ℎ𝑥2[𝑛𝜏 − 𝐶𝜏]
3 [
1

𝑥
−
1

𝑦
] [𝑥 −

𝑙

𝑦
]
2
)}                                                                                                

(78) 
Recall, (38) 
1

𝑟
{
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
} = (𝜛. ∇̅)𝑢 +  𝜐∇2𝜛 

 
Substituting equations (76)-(77) (solutions of local and convective 
acceleration) into the vorticity transport equation (38) 
1

𝑟
{−

1

𝜌𝐹0
[
[𝑛𝐵−𝐶𝐵]

2
+ [𝑛𝑃 + 𝐶𝑃] − [𝑛𝜏 − 𝐶𝜏]] −

𝑦𝜀𝑥𝜀𝑦[𝑛𝜏−𝐶𝜏]
2

2
+
[𝑛𝐵−𝐶𝐵]

2𝜌𝐹0
+
𝑦𝜀𝑥𝜀𝑦[𝑛𝜏−𝐶𝜏]

2

2
} =

[𝑛𝜏−𝐶𝜏]

𝜇𝐹0
{𝜛𝑥 [

𝑥[𝑦−
ℎ

𝑥
]

[𝑦−
ℎ

𝑙
]
] + 𝜛𝑦 [

𝑦[𝑥−
𝑙

𝑦
]

[𝑥−
𝑙

ℎ
]
]} +  𝜐 {

𝜕2(
𝜕𝑢𝑧
𝜕𝑦
−
𝜕𝑢𝑦

𝜕𝑧
)

𝜕2𝑥
+

𝜕2(
𝜕𝑢𝑧
𝜕𝑥
−
𝜕𝑢𝑥
𝜕𝑧 
)

𝜕2𝑦
+
𝜕2(

𝜕𝑢𝑦

𝜕𝑥
−
𝜕𝑢𝑥
𝜕𝑦
)

𝜕2𝑧
}                           (79) 

Also recall, (42) 
(3 − 𝛽)ln 𝛾 = ln𝛼3

− ln

{
 
 

 
 {

𝜌

{(𝜛.∇̅)𝑢+ 𝑢∇2𝜛}
{
𝜕𝑢

𝜕𝑡
+ 𝑢̅∇𝑢}}

2

𝐿

𝑑𝜃𝑟𝑣
2

}
 
 

 
 

 

Substituting (76) and (77) into the Natural logarithmic function of 
vorticity transport equation gives; 

⇒ 𝛾(3−𝛽)𝐿𝜌 {−
1

𝜌𝐹0
[
[𝑛𝐵−𝐶𝐵]

2
+ [𝑛𝑃 + 𝐶𝑃] − [𝑛𝜏 − 𝐶𝜏]] −

𝑦𝜀𝑥𝜀𝑦[𝑛𝜏−𝐶𝜏]
2

2
+
[𝑛𝐵−𝐶𝐵]

2𝜌𝐹0
+
𝑦𝜀𝑥𝜀𝑦[𝑛𝜏−𝐶𝜏]

2

2
}
2

=

𝛼3𝑑𝜃𝑟𝑣
2 {

[𝑛𝜏−𝐶𝜏]

𝜇𝐹0
{𝜛𝑥 [

𝑥[𝑦−
ℎ

𝑥
]

[𝑦−
ℎ

𝑙
]
] + 𝜛𝑦 [

𝑦[𝑥−
𝑙

𝑦
]

[𝑥−
𝑙

ℎ
]
]} +

 𝜐 {
𝜕2(

𝜕𝑢𝑧
𝜕𝑦
−
𝜕𝑢𝑦

𝜕𝑧
)

𝜕2𝑥
+
𝜕2(

𝜕𝑢𝑧
𝜕𝑥
−
𝜕𝑢𝑥
𝜕𝑧 
)

𝜕2𝑦
+
𝜕2(

𝜕𝑢𝑦

𝜕𝑥
−
𝜕𝑢𝑥
𝜕𝑦
)

𝜕2𝑧
}}

2

       (80) 
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To find the pressure and momentum of a fluid within a 
reference frame (x,y) 
Let (x,y) be the coordinates of maximum range x = R and maximum 
height or altitude y = h. 
From (54) 

 −∇𝑃 = −
1

𝐹0
[𝑛𝑃 + 𝐶𝑃] 

⇒ −
𝜕𝑝

𝜕𝑥
= −

1

𝐹0
[𝑛𝑃 + 𝐶𝑃]  

Integrating  

−∫
𝜕𝑝

𝜕𝑥
. 𝜕𝑥 = −∫

1

𝐹0
[𝑛𝑃 + 𝐶𝑃]

𝑅

0

 𝜕𝑥 

As 𝜕𝑥 → 0 

𝑃 =
1

𝐹0
[𝑛𝑃 + 𝐶𝑃]𝑅                                                                                                         

(81) 

⇒ 𝑛𝑃 =
𝑃𝐹0

𝑅
, at 𝐶𝑃 = 0 

From, (66) , (65) and (51)  

𝑛𝜏 =
𝑢

𝑦𝜀𝑦
, 𝐶𝜏 = 0 

𝑛𝜏 =
𝑢

𝑥𝜀𝑥
, 𝐶𝜏 = 0 

𝑛𝐵 = −𝑛𝑃 + 𝑛𝜏  

⇒ 𝑛𝐵 = −
𝑃𝐹0

𝑅
+

𝑢

𝑥𝜀𝑥
 

⇒ 𝑛𝐵 = −
𝑃𝐹0

𝑅
+

𝑢

𝑅𝜀𝑥
, at 𝑥 = 𝑅 

⇒ 𝑛𝐵 =
1

𝑅
{−𝑃𝐹0 +

𝑢

𝜀𝑥
}                                                                                               

(82) 
1

𝐹0
[𝑛𝐵] = 𝜌

𝒟𝑢

𝒟𝑡
, 𝐶𝐵 = 0 

⇒ 𝑛𝐵 = 𝜌
𝒟𝑢

𝒟𝑡
=

1

𝐹0𝑅
{−𝑃𝐹0 +

𝑢

𝜀𝑥
} 

∴ 𝜌
𝒟𝑢

𝒟𝑡
=

1

𝐹0𝑅
{−𝑃𝐹0 +

𝑢

𝜀𝑥
}                                                                                           

(83) 
 

 

Figure 25  𝝆
𝓓𝒖

𝓓𝒕
/𝑹 , 𝝆

𝓓𝒖

𝓓𝒕
/𝜺𝒚 

 
Similarly, 

𝜌
𝒟𝑢

𝒟𝑡
=

1

𝐹0
{−

𝑃𝐹0

𝑅
+

𝑢

𝑦𝜀𝑦
}, in y-direction                                                                        

(84) 
 
Solutions to the parameters in the linear and non-linear terms 

on Torus ℝ𝟑/ℤ𝟑. 
The shear force divergence as a linear term with its solution given 
in Lemma 4, due to internal friction (viscosity) in a fluid is integrated 

on Torus ℝ𝟑/ℤ𝟑, yielding the solution to the divergence of velocity 

𝑢 in 3-dimensions. Substituting the solution of the divergence of 𝑢, 

into the non-linear term yield the solutions of; 𝑣 𝑎𝑛𝑑 𝑤, local 
acceleration, convective acceleration and pressure gradient. The 
solutions yield the subsequent graphs and the vorticity transport 
equation.  
Considering the linear term from “Lemma 4”: 

𝜇∇2𝑢 = 𝜇 (
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
) =

1

𝐹0
[𝑛𝜏 − 𝐶𝜏] 

  ⇒ 
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
=

1

𝜇𝐹0
[𝑛𝜏 − 𝐶𝜏] 

Integrating, 

∭(
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
)𝜕𝑥𝜕𝑦𝜕𝑧

=∭
1

𝜇𝐹0
[𝑛𝜏 − 𝐶𝜏]𝜕𝑥𝜕𝑦𝜕𝑧

𝑥𝑦𝑧

000

 

 
As, 𝜕𝑥 ⟶ 0, 𝜕𝑦 ⟶ 0 and 𝜕𝑧 ⟶ 0 

𝑢 =
𝑥2𝑦2𝑧2[𝑛𝜏−𝐶𝜏]

𝜇𝐹0[𝑦
2𝑧2+𝑥2𝑧2+𝑥2𝑦2]

                                                                                                

(85) 
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Figure 26: Graph of 𝒖/𝒙 & 𝒖/𝒚 

 
Figure 27 :   Graph of 𝒖/𝒚 & 𝒖/𝒛 
 

To find the change in velocity on torus [𝑥, 𝑦, 𝑧]𝑇 . 
𝜕𝑢

𝜕𝑥
=

2𝑥𝑦4𝑧4[𝑛𝜏−𝐶𝜏]

𝜇𝐹0[𝑦
2𝑧2+𝑥2𝑧2+𝑥2𝑦2]2

                                                                                               

(86) 

 

Figure.. 28   Graph of 
𝝏𝒖

𝝏𝒙
 / 𝒙 

 
𝜕𝑢

𝜕𝑦
=

2𝑦𝑥4𝑧4[𝑛𝜏−𝐶𝜏]

𝜇𝐹0[𝑦
2𝑧2+𝑥2𝑧2+𝑥2𝑦2]2

                               (87) 

 

 

Figure 29   Graph of 
𝝏𝒖

𝝏𝒚
 / 𝒚 
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𝜕𝑢

𝜕𝑧
=

2𝑧𝑥4𝑦4[𝑛𝜏−𝐶𝜏]

𝜇𝐹0[𝑦
2𝑧2+𝑥2𝑧2+𝑥2𝑦2]2

                              (88) 

 

 

Figure 30    Graph of 
𝝏𝒖

𝝏𝒛
 / 𝒛 

Integrating "𝑢" on torus [𝑙, ℎ, 𝑘]𝑇 

∫
𝜕𝑢

𝜕𝑥
𝜕𝑥 = ∫

2𝑥𝑦4𝑧4[𝑛𝜏 − 𝐶𝜏]

𝜇𝐹0[𝑦
2𝑧2 + 𝑥2𝑧2 + 𝑥2𝑦2]2

𝜕𝑥
𝑙

0

 

As 𝜕𝑥 → 0 

∫𝑑𝑢 = ∫
2𝑥𝑦4𝑧4[𝑛𝜏 − 𝐶𝜏]

𝜇𝐹0[𝑦
2𝑧2 + 𝑥2𝑧2 + 𝑥2𝑦2]2

𝑑𝑥 

𝑢 =
𝑦4𝑧4[𝑛𝜏 − 𝐶𝜏]

𝜇𝐹0[𝑦
2+𝑧2][𝑦2𝑧2 + 𝑥2𝑧2 + 𝑥2𝑦2]

ln[𝑦2𝑧2 + 𝑥2𝑧2

+ 𝑥2𝑦2] + 𝑐 

𝑐 = ln𝐴 

At 𝑥 = 𝑙, 𝑦 = ℎ, 𝑧 = 𝑘, 𝑢 = 𝑢∝ 

𝑐 = 𝑢∝ −
ℎ4𝑘4[𝑛𝜏 − 𝐶𝜏]

𝜇𝐹0[ℎ
2+𝑘2][ℎ2𝑘2 + 𝑙2𝑘2 + 𝑙2ℎ2]

ln[ℎ2𝑘2

+ 𝑙2𝑘2 + 𝑙2ℎ2] 

ln 𝐴 = 𝑢∝ −
ℎ4𝑘4[𝑛𝜏 − 𝐶𝜏]

𝜇𝐹0[ℎ
2+𝑘2][ℎ2𝑘2 + 𝑙2𝑘2 + 𝑙2ℎ2]

ln[ℎ2𝑘2

+ 𝑙2𝑘2 + 𝑙2ℎ2] 

⇒ 𝐴 = 𝑒
𝑢∝−

ℎ4𝑘4[𝑛𝜏−𝐶𝜏]

𝜇𝐹0[ℎ
2+𝑘2][ℎ2𝑘2+𝑙2𝑘2+𝑙2ℎ2]

ln[ℎ2𝑘2+𝑙2𝑘2+𝑙2ℎ2]
                                                            

(89) 

𝑢 =
𝑦4𝑧4[𝑛𝜏−𝐶𝜏]

𝜇𝐹0[𝑦
2+𝑧2][𝑦2𝑧2+𝑥2𝑧2+𝑥2𝑦2]

ln[𝑦2𝑧2 + 𝑥2𝑧2 + 𝑥2𝑦2] +

𝑢∝ −
ℎ4𝑘4[𝑛𝜏−𝐶𝜏]

𝜇𝐹0[ℎ
2+𝑘2][ℎ2𝑘2+𝑙2𝑘2+𝑙2ℎ2]

ln[ℎ2𝑘2 + 𝑙2𝑘2 + 𝑙2ℎ2]                                                                                                                                

(90) 
 
 

 
Figure 31  Graph of 𝒖 / 𝒙 &  𝒖 / 𝒚 
 

 
Figure 32 Graph of 𝒖/ 𝒛 
𝑢

𝑢∝
=

𝑦4𝑧4[𝑛𝜏−𝐶𝜏]

𝑢∝𝜇𝐹0[𝑦
2+𝑧2][𝑦2𝑧2+𝑥2𝑧2+𝑥2𝑦2]

ln[𝑦2𝑧2 + 𝑥2𝑧2 +

𝑥2𝑦2] −
ℎ4𝑘4[𝑛𝜏−𝐶𝜏]

𝜇𝐹0[ℎ
2+𝑘2][ℎ2𝑘2+𝑙2𝑘2+𝑙2ℎ2]

ln[ℎ2𝑘2 + 𝑙2𝑘2 +

𝑙2ℎ2] + 1                                                                                                                      
(91) 
 
𝑢

𝑢∝

=
[𝑛𝜏 − 𝐶𝜏]

𝑢∝𝜇𝐹0
[

𝑦4𝑧4[𝑛𝜏 − 𝐶𝜏]

[𝑦2+𝑧2][𝑦2𝑧2 + 𝑥2𝑧2 + 𝑥2𝑦2]
ln[𝑦2𝑧2

+ 𝑥2𝑧2 + 𝑥2𝑦2]

−
ℎ4𝑘4[𝑛𝜏 − 𝐶𝜏]

[ℎ2+𝑘2][ℎ2𝑘2 + 𝑙2𝑘2 + 𝑙2ℎ2]
ln[ℎ2𝑘2 + 𝑙2𝑘2 + 𝑙2ℎ2]] 
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𝑢

𝑢∝
=
[𝑛𝜏−𝐶𝜏]

𝑢∝𝜇𝐹0
[ln

[𝑦2𝑧2+𝑥2𝑧2+𝑥2𝑦2]

𝑦4𝑧4[𝑛𝜏−𝐶𝜏]

[𝑦2+𝑧2][𝑦2𝑧2+𝑥2𝑧2+𝑥2𝑦2]

[ℎ2𝑘2+𝑙2𝑘2+𝑙2ℎ2]

ℎ4𝑘4[𝑛𝜏−𝐶𝜏]

[ℎ2+𝑘2][ℎ2𝑘2+𝑙2𝑘2+𝑙2ℎ2]

] + 1                                                      

(92) 
 
To find the velocities in the non-linear term in 3-dimensions. 

𝜌
𝒟𝑢

𝒟𝑡
=

1

𝐹0
(𝑛𝐵 − 𝐶𝐵), from equation (53) 

⇒ 𝜌 [
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
] =

1

𝐹0
(𝑛𝐵 − 𝐶𝐵) 

⇒ [
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
] =

1

 𝜌𝐹0
(𝑛𝐵 − 𝐶𝐵) 

Let, 𝛽 =
[𝑛𝜏−𝐶𝜏]

𝜇𝐹0[𝑦
2𝑧2+𝑥2𝑧2+𝑥2𝑦2]

 , 𝜑 =
[𝑛𝜏−𝐶𝜏]

𝜇𝐹0[𝑦
2𝑧2+𝑥2𝑧2+𝑥2𝑦2]2

  

⇒
𝜕𝑢

𝜕𝑥
=

2𝑥𝑦4𝑧4[𝑛𝜏 − 𝐶𝜏]

𝜇𝐹0[𝑦
2𝑧2 + 𝑥2𝑧2 + 𝑥2𝑦2]2

= 2𝑥𝑦4𝑧4𝜑 

⇒
𝜕𝑢

𝜕𝑦
=

2𝑦𝑥4𝑧4[𝑛𝜏 − 𝐶𝜏]

𝜇𝐹0[𝑦
2𝑧2 + 𝑥2𝑧2 + 𝑥2𝑦2]2

= 2𝑦𝑥4𝑧4𝜑 

⇒
𝜕𝑢

𝜕𝑥
=

2𝑧𝑥4𝑦4[𝑛𝜏 − 𝐶𝜏]

𝜇𝐹0[𝑦
2𝑧2 + 𝑥2𝑧2 + 𝑥2𝑦2]2

= 2𝑧𝑥4𝑦4𝜑 

𝑢 =
𝑥2𝑦2𝑧2[𝑛𝜏−𝐶𝜏]

𝜇𝐹0[𝑦
2𝑧2+𝑥2𝑧2+𝑥2𝑦2]

= 𝑥2𝑦2𝑧2𝛽                                                                                                    

(93) 

⇒
𝜕𝑢

𝜕𝑡
+ 𝑢[2𝑥𝑦4𝑧4𝜑] + 𝑣[2𝑦𝑥4𝑧4𝜑] + 𝑤[2𝑧𝑥4𝑦4𝜑]

=
1

𝜌𝐹0
[𝑛𝐵 − 𝑐𝐵] 

⇒
𝜕𝑢

𝜕𝑡
+ 2𝑥𝑦𝑧𝜑[𝑦3𝑧3𝑢 + 𝑥3𝑧3𝑣 + 𝑥3𝑦3𝑤]

=
1

𝜌𝐹0
[𝑛𝐵 − 𝑐𝐵] 

𝜕𝑢

𝜕𝑡
=

1

𝜌𝐹0
[𝑛𝐵 − 𝑐𝐵] − 2𝑥𝑦𝑧𝜑[𝑦

3𝑧3𝑢 + 𝑥3𝑧3𝑣 + 𝑥3𝑦3𝑤], 

Local acceleration                         (94)  

2𝑥𝑦𝑧𝜑[𝑦3𝑧3𝑢 + 𝑥3𝑧3𝑣 + 𝑥3𝑦3𝑤] =
𝜕𝑢

𝜕𝑡
−

1

𝜌𝐹0
[𝑛𝐵 − 𝑐𝐵],  

Convective acceleration               (95)  

⇒ 𝑦3𝑧3𝑢 + 𝑥3𝑧3𝑣 + 𝑥3𝑦3𝑤

=
1

2𝑥𝑦𝑧𝜑𝜌𝐹0
[𝑛𝐵 − 𝑐𝐵] −

1

2𝑥𝑦𝑧𝜑

𝜕𝑢

𝜕𝑡
 

⇒ 𝑥3𝑧3𝑣 + 𝑥3𝑦3𝑤 =
1

2𝑥𝑦𝑧𝜑𝜌𝐹0
[𝑛𝐵 − 𝑐𝐵] −

1

2𝑥𝑦𝑧𝜑
.
𝜕𝑢

𝜕𝑡
− 𝑦3𝑧3𝑢 

𝑧3𝑣 + 𝑦3𝑤 =
1

2𝑥4𝑦𝑧𝜑𝜌𝐹0
[𝑛𝐵 − 𝑐𝐵] −

1

2𝑥4𝑦𝑧𝜑
.
𝜕𝑢

𝜕𝑡

−
𝑦3𝑧3𝑢

𝑥3
 

𝑧3𝑣 + 𝑦3𝑤 =
1

2𝑥4𝑦𝑧𝜑𝜌𝐹0
[𝑛𝐵 − 𝑐𝐵] −

2𝑦𝑥4𝑧4

2𝑥4𝑦𝑧
.
𝜕𝑦

𝜕𝑢
.
𝜕𝑢

𝜕𝑡

−
𝑦3𝑧3𝑢

𝑥3
 

𝑧3𝑣 + 𝑦3𝑤 =
1

2𝑥4𝑦𝑧𝜑𝜌𝐹0
[𝑛𝐵 − 𝑐𝐵] − 𝑧

3𝑣 −
𝑦3𝑧3𝑢

𝑥3
 

2𝑧3𝑣 + 𝑦3𝑤 =
1

2𝑥4𝑦𝑧𝜑𝜌𝐹0
[𝑛𝐵 − 𝑐𝐵] −

𝑦3𝑧3𝑢

𝑥3
 

⇒ 2𝑧3𝑣 + 𝑦3𝑤 =
1

2𝑥4𝑦𝑧𝜑𝜌𝐹0
[𝑛𝐵 − 𝑐𝐵] −

𝑦5𝑧5𝛽

𝑥
 

Solving for 𝑣 and 𝑤 simultaneously between any two points; 1 and 
2 in a flow field, 

Let, 2𝑧31𝑣 + 𝑦
3
1
𝑤 =

[𝑛𝐵−𝑐𝐵]

2𝑥41𝑦1𝑧1𝜑𝜌𝐹0
−
𝑦5𝟏𝑧

5
1𝛽1

𝑥𝟏
                                                                 

(1)  

2𝑧32𝑣 + 𝑦
3
2
𝑤 =

[𝑛𝐵−𝑐𝐵]

2𝑥42𝑦2𝑧2𝜑𝜌𝐹0
−
𝑦52𝑧

5
2𝛽2

𝑥2
                                                                        

(2) 

∆𝑘 = |
2𝑧32                   𝑦3

1

2𝑧32                  𝑦3
2

| = 2[𝑧31𝑦
3
2
− 𝑧32𝑦

3
1
] 

 
 

∆𝑣 = |
|

[𝑛𝐵 − 𝑐𝐵]

2𝑥41𝑦1𝑧1𝜑𝜌𝐹0
−
𝑦5
𝟏
𝑧51𝛽1

𝑥𝟏
                      𝑦3

1

[𝑛𝐵 − 𝑐𝐵]

2𝑥42𝑦2𝑧2𝜑𝜌𝐹0
−
𝑦5
2
𝑧52𝛽2

𝑥2
                    𝑦3

2

|
| 

=       𝑦3
2
[
[𝑛𝐵 − 𝑐𝐵]

2𝑥41𝑦1𝑧1𝜑𝜌𝐹0
−
𝑦5
𝟏
𝑧51𝛽1

𝑥𝟏
]

−       𝑦3
1
[
[𝑛𝐵 − 𝑐𝐵]

2𝑥42𝑦2𝑧2𝜑𝜌𝐹0

−
𝑦5
2
𝑧52𝛽2

𝑥2
] 

 
 

∆𝑤 = |
|
2𝑧1
3                       

[𝑛𝐵 − 𝑐𝐵]

2𝑥41𝑦1𝑧1𝜑𝜌𝐹0
−
𝑦5
𝟏
𝑧51𝛽1

𝑥𝟏

2𝑧2
3                       

[𝑛𝐵 − 𝑐𝐵]

2𝑥42𝑦2𝑧2𝜑𝜌𝐹0
−
𝑦5
2
𝑧52𝛽2

𝑥2

|
| 

= 2𝑧31 [
[𝑛𝐵 − 𝑐𝐵]

2𝑥42𝑦2𝑧2𝜑𝜌𝐹0
−
𝑦5
2
𝑧52𝛽2

𝑥2
]

−       2𝑧32 [
[𝑛𝐵 − 𝑐𝐵]

2𝑥41𝑦1𝑧1𝜑𝜌𝐹0

−
𝑦5
𝟏
𝑧51𝛽1

𝑥𝟏
] − 

 
 

𝑣 =
∆𝑣

∆𝑘
=

1

2[𝑧31𝑦
3
2−𝑧

3
2𝑦
3
1]
{      𝑦3

2
[

[𝑛𝐵−𝑐𝐵]

2𝑥41𝑦1𝑧1𝜑𝜌𝐹0
−

𝑦5𝟏𝑧
5
1𝛽1

𝑥𝟏
] −       𝑦3

1
[

[𝑛𝐵−𝑐𝐵]

2𝑥42𝑦2𝑧2𝜑𝜌𝐹0
−
𝑦52𝑧

5
2𝛽2

𝑥2
]}          (96) 

 
 

𝑤 =
∆𝑤

∆𝑘
=

1

𝑧31𝑦
3
2−𝑧

3
2𝑦
3
1

{      𝑧31 [
[𝑛𝐵−𝑐𝐵]

2𝑥41𝑦1𝑧1𝜑𝜌𝐹0
−

𝑦5𝟏𝑧
5
1𝛽1

𝑥𝟏
] −       𝑧32 [

[𝑛𝐵−𝑐𝐵]

2𝑥42𝑦2𝑧2𝜑𝜌𝐹0
−
𝑦52𝑧

5
2𝛽2

𝑥2
]}             (97) 

Pressure gradient  

−∇𝑝 = −
1

𝐹0
[𝑛𝑃 + 𝐶𝑃] =

1

𝐹0
[𝑛𝐵 + 𝐶𝐵] −

1

𝐹0
[𝑛𝜏 + 𝐶𝜏] 

−∇𝑝 = 𝜌 [
𝜕𝑢

𝜕𝑡
+ 2𝑥𝑦𝑧𝜑[𝑦3𝑧3𝑢 + 𝑥3𝑧3𝑣 + 𝑥3𝑦3𝑤]]

−
1

𝐹0
[𝑛𝜏 + 𝐶𝜏] 

⇒ −
𝜕𝑝

𝜕𝑥
=  𝜌 [

𝜕𝑢

𝜕𝑡
+ 2𝑥𝑦𝑧𝜑[𝑦3𝑧3𝑢 + 𝑥3𝑧3𝑣 + 𝑥3𝑦3𝑤]] −

1

𝐹0
[𝑛𝜏 + 𝐶𝜏]                               (98) 
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Vorticity Transport Equation 
From the solutions in (93), (86), (87) and (88) 
 
CURL 2: 

𝑢 =
𝑥2𝑦2𝑧2[𝑛𝜏 − 𝐶𝜏]

𝜇𝐹0[𝑦
2𝑧2 + 𝑥2𝑧2 + 𝑥2𝑦2]

 

𝜕𝑢

𝜕𝑥
=

2𝑥𝑦4𝑧4[𝑛𝜏 − 𝐶𝜏]

𝜇𝐹0[𝑦
2𝑧2 + 𝑥2𝑧2 + 𝑥2𝑦2]2

 

𝜕𝑢

𝜕𝑦
=

2𝑦𝑥4𝑧4[𝑛𝜏 − 𝐶𝜏]

𝜇𝐹0[𝑦
2𝑧2 + 𝑥2𝑧2 + 𝑥2𝑦2]2

 

𝜕𝑢

𝜕𝑧
=

2𝑧𝑥4𝑦4[𝑛𝜏 − 𝐶𝜏]

𝜇𝐹0[𝑦
2𝑧2 + 𝑥2𝑧2 + 𝑥2𝑦2]2

 

𝑢𝑥 =
𝑦4𝑧4[𝑛𝜏 − 𝐶𝜏]

𝜇𝐹0[𝑦
2 + 𝑧2]2[𝑦2𝑧2 + 𝑥2𝑧2 + 𝑥2𝑦2]2

ln[𝑦2𝑧2

+ 𝑥2𝑧2 + 𝑥2𝑦2] + 𝐶𝑥 

𝑢𝑦 =
𝑥4𝑧4[𝑛𝜏 − 𝐶𝜏]

𝜇𝐹0[𝑥
2 + 𝑧2]2[𝑦2𝑧2 + 𝑥2𝑧2 + 𝑥2𝑦2]2

ln[𝑦2𝑧2

+ 𝑥2𝑧2 + 𝑥2𝑦2] + 𝐶𝑦 

𝑢𝑧 =
𝑥4𝑦4[𝑛𝜏 − 𝐶𝜏]

𝜇𝐹0[𝑥
2 + 𝑦2]2[𝑦2𝑧2 + 𝑥2𝑧2 + 𝑥2𝑦2]2

ln[𝑦2𝑧2

+ 𝑥2𝑧2 + 𝑥2𝑦2] + 𝐶𝑧 

𝜛 = ∇̅ × (

𝑢𝑥
𝑢𝑦
𝑢𝑧
) 

 𝜛 = ||

𝑖 𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝑢𝑥 𝑢𝑦 𝑢𝑧

|| 

The components of rotation are: 

𝜛𝑥 = (
𝜕𝑢𝑧

𝜕𝑦
−
𝜕𝑢𝑦

𝜕𝑧
) =

𝑥4[𝑛𝜏−𝐶𝜏]

𝜇𝐹0[𝑦
2𝑧2+𝑥2𝑧2+𝑥2𝑦2]2

{
𝑦4[2𝑦𝑥2+2𝑦𝑧2]

[𝑥2+𝑦2]
−

𝑧4[2𝑧𝑥2+2𝑧𝑦2]

[𝑥2+𝑧2]
+

𝑦3{[𝑦2𝑧2+𝑥2𝑧2+𝑥2𝑦2][4𝑥2+4𝑦2−2𝑦2]−2𝑦2[𝑥2+𝑦2][𝑥2+𝑧2]}

[𝑥2+𝑦2]2
−

𝑧3{[𝑦2𝑧2+𝑥2𝑧2+𝑥2𝑦2][4𝑥2+4𝑧2−2𝑧2]−2𝑧2[𝑥2+𝑦2][𝑥2+𝑧2]}

[𝑥2+𝑧2]2
} ln[𝑦2𝑧2 +

𝑥2𝑧2 + 𝑥2𝑦2]                                (99) 
 

𝜛𝑦 = (
𝜕𝑢𝑧

𝜕𝑥
−
𝜕𝑢𝑥

𝜕𝑧 
) =

𝑦4[𝑛𝜏−𝐶𝜏]

𝜇𝐹0[𝑦
2𝑧2+𝑥2𝑧2+𝑥2𝑦2]2

{
𝑥4[2𝑥𝑦2+2𝑥𝑧2]

[𝑥2+𝑦2]
−

𝑧4[2𝑧𝑥2+2𝑧𝑦2]

[𝑦2+𝑧2]
+

𝑥3{[𝑦2𝑧2+𝑥2𝑧2+𝑥2𝑦2][4𝑥2+4𝑦2−2𝑥2]−2𝑥2[𝑥2+𝑦2][𝑦2+𝑧2]}

[𝑥2+𝑦2]2
−

𝑧3{[𝑦2𝑧2+𝑥2𝑧2+𝑥2𝑦2][4𝑦2+4𝑧2−2𝑧2]−2𝑧2[𝑥2+𝑦2][𝑦2+𝑧2]}

[𝑦2+𝑧2]2
} ln[𝑦2𝑧2 +

𝑥2𝑧2 + 𝑥2𝑦2]                                (100) 
 

𝜛𝑧 = (
𝜕𝑢𝑦

𝜕𝑥
−
𝜕𝑢𝑥

𝜕𝑦
) =

𝑧4[𝑛𝜏−𝐶𝜏]

𝜇𝐹0[𝑦
2𝑧2+𝑥2𝑧2+𝑥2𝑦2]2

{
𝑥4[2𝑥𝑦2+2𝑥𝑧2]

[𝑥2+𝑧2]
−

𝑦4[2𝑦𝑥2+2𝑦𝑧2]

[𝑦2+𝑧2]
+

𝑥3{[𝑦2𝑧2+𝑥2𝑧2+𝑥2𝑦2][4𝑥2+4𝑧2−2𝑥2]−2𝑥2[𝑥2+𝑧2][𝑦2+𝑧2]}

[𝑥2+𝑧2]2
−

𝑦3{[𝑦2𝑧2+𝑥2𝑧2+𝑥2𝑦2][4𝑦2+4𝑧2−2𝑦2]−2𝑦2[𝑦2+𝑧2][𝑥2+𝑧2]}

[𝑦2+𝑧2]2
} ln[𝑦2𝑧2 +

𝑥2𝑧2 + 𝑥2𝑦2]                                  (101) 
Recall, (38) 

 
1

𝑟
{
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
} = (𝜛. ∇̅)𝑢 +  𝜐∇2𝜛 

Substituting equations (99), (100) and (101) (solutions to the partial 

derivatives) into the vorticity transport equation; 
1

𝑟
{
1

𝜌𝐹0
[𝑛𝐵 − 𝑐𝐵] − 4𝑥𝑦𝑧𝜑[𝑦

3𝑧3𝑢 + 𝑥3𝑧3𝑣 + 𝑥3𝑦3𝑤]} =

2𝑥𝑦[𝑛𝜏−𝐶𝜏]

𝜇𝐹0[𝑦
2𝑧2+𝑥2𝑧2+𝑥2𝑦2]2

{𝑦3𝑧3𝜛𝑥 + 𝑥
3𝑧3𝜛𝑦 + 𝑥

3𝑦3𝜛𝑧} +

 𝜐 {
𝜕2(

𝜕𝑢𝑧
𝜕𝑦
−
𝜕𝑢𝑦

𝜕𝑧
)

𝜕2𝑥
+
𝜕2(

𝜕𝑢𝑧
𝜕𝑥
−
𝜕𝑢𝑥
𝜕𝑧 
)

𝜕2𝑦
+
𝜕2(

𝜕𝑢𝑦

𝜕𝑥
−
𝜕𝑢𝑥
𝜕𝑦
)

𝜕2𝑧
}                                                                      

(102) 
 
 
 
 
Recall (42) 
 
(3 − 𝛽)ln 𝛾 = ln𝛼3

− ln

{
 
 

 
 {

𝜌

{(𝜛.∇̅)𝑢+ 𝑢∇2𝜛}
{
𝜕𝑢

𝜕𝑡
+ 𝑢̅∇𝑢}}

2

𝐿

𝑑𝜃𝑟𝑣
2

}
 
 

 
 

 

Substituting (94) into (95)  into the Natural logarithmic function of 
vorticity transport equation gives; 
 

⇒ 𝛾(3−𝛽)𝐿𝜌 {
1

𝜌𝐹0
[𝑛𝐵 − 𝑐𝐵] − 4𝑥𝑦𝑧𝜑[𝑦

3𝑧3𝑢 + 𝑥3𝑧3𝑣 +

𝑥3𝑦3𝑤]}
2
= 𝛼3𝑑𝜃𝑟𝑣

2 {
2𝑥𝑦[𝑛𝜏−𝐶𝜏]

𝜇𝐹0[𝑦
2𝑧2+𝑥2𝑧2+𝑥2𝑦2]2

{𝑦3𝑧3𝜛𝑥 +

𝑥3𝑧3𝜛𝑦 + 𝑥
3𝑦3𝜛𝑧} +  𝜐 {

𝜕2(
𝜕𝑢𝑧
𝜕𝑦
−
𝜕𝑢𝑦

𝜕𝑧
)

𝜕2𝑥
+
𝜕2(

𝜕𝑢𝑧
𝜕𝑥
−
𝜕𝑢𝑥
𝜕𝑧 
)

𝜕2𝑦
+

𝜕2(
𝜕𝑢𝑦

𝜕𝑥
−
𝜕𝑢𝑥
𝜕𝑦
)

𝜕2𝑧
}}

2

                                                                                                                                      

(103) 
 
CONCLUDING REMARKS 
The derived solutions provide exact expressions for velocity, 
acceleration, pressure gradients, and vorticity, particularly on a 
toriodal domain. The logarithmic model of vortex formation 
highlights the role of energy, geometry, and spin in turbulent flows. 
By bridging fluid dynamics with quantum mechanics and relativity, 
this work contributes a novel analytical path to one of the Clay 
Millennium problems. 
The linear term (Ω) of the Navier-Stokes equation expressed as a 
function of its quantum number, provides a solution for the PDEs. 

By differentiating the function, lim
Δ𝑛Ω→0

dΩ

d𝑛Ω
=
𝑓(𝑛Ω+d𝑛Ω)−𝑓(𝑛Ω)

d𝑛Ω
=

𝐹𝑚, was obtained from Lemma 1. Furthermore, a solution of the 

form, ∇2𝑢 =
1

𝜇𝐹0
[𝑛𝜏 − 𝐶𝜏], was obtained for the Shearing force. 

The momentum force per volume and the pressure gradient in the 
same manner, this led to a new simplified form of the Navier-Stokes 
equation. By integration from both sides of the equation ∀ 𝑛𝜏 ∈ ℤ 

and ℝ+
𝑑 = {(𝑥1, 𝑥2, … , 𝑥𝑑) ∈ ℝ

𝑑: 𝑑 > 0}, yields tractable 

solution for  𝑢 ≅
𝑛𝜏𝐹𝑚

𝜇
𝑢(𝑥1

𝑑−1, 𝑥2
𝑑−1, … , 𝑥𝑑

𝑑−1), it rate of change 

in [ℝ𝑑/ℤ𝑑: 𝑑 > 0, 𝑡 > 0] and the pressure gradient, 
𝜕𝑝

𝜕𝑥𝑖
, ℝ𝑑: 𝑥[0,∞]. Substituting the aforementioned solutions into 

the substantial derivative of the momentum force also provides 
tractable solutions for the Local and convective accelerations on 

https://dx.doi.org/10.4314/swj.v20i4.46
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torus. Plotting 𝑢(𝑥, 𝑦, 𝑧, 𝑡), against space and time from the 
aforementioned equations yields; parabolic curves, asymptotic 
curves, inverted curves, linear graphs and also the topology of the 
flows as shown in figures; 17, 23, 24, 25 and 26.   The general 
quantum number (𝑛) of the Navier-Stokes equation determines, 
the states of equilibrium, smoothness and turbulence (chaos) in a 
fluid continuum. The existential of smooth solutions is a function of 
positive values of the general quantum number "𝑛" of the Navier-
Stokes equation at any given time. Turbulence is a function of the 
negative values of "𝑛" at any given time. When 𝑛 = 0 the fluid is 
said to be at equilibrium (in between Smoothness and Outburst), at 
𝑛 < 0 the fluid is in a state of chaos (outburst) whose magnitude 
increases as 𝑛 is decreasing (going down the slope of the graph in 
fig. 6), at this condition the formation of vorticity follows a natural 
logarithmic function showing mechanical/thermal energy, 
vibrational energy and vorticity term and its diffusion 

((3 − 𝛽)ln 𝛾 = ln [𝜙3√
𝑚𝑣2𝜎

[𝑇−𝑓𝑇2(𝑤+𝑣)]
] −

ln {
{

𝜌

{(𝜛.∇̅)𝑢+ 𝑢∇2𝜛}
{
𝜕𝑢

𝜕𝑡
+𝑢∇𝑢}}

2

𝐿

𝑑𝜃𝑟𝑣
2 }), and also when 𝑛 > 0 the fluid is 

in a state of smoothness whose magnitude increases with increase 
in 𝑛 (going up the slope of the graph in fig. 5). At 𝑛 = 0 the fluid is 
said to be in equilibrium. 
This approach not only deepens theoretical understanding but also 
holds potential applications in weather prediction, aviation safety, 
quantum fluid modeling, and advanced computational fluid 
dynamics. Future work will focus on computing specific minimum 
forces for different fluid types and validating these models with 
empirical data. 
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