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ABSTRACT

This study develops and analyses a deterministic Susceptible
(S), Exposed (E), Contact traced (C), Infectious (1), Recovered (R),
Dead (D), and Aware susceptible (A) individuals in the human
population, Susceptible (S) and Exposed/Infectious (E/I) rodent
population (SECIRDA-SEI) model for Lassa fever transmission
that explicitly incorporates (i) contact tracing of exposed-but-
not-yet-infectious individuals, (i) public awareness interventions
that divert susceptible individuals into a low-risk awareness class,
and (iii) multiple infection routes (human-human, rodent-human,
and corpse-human/rodent). Analytical results establish the non-
negativity and boundedness of solutions, the existence of a
disease-free equilibrium (DFE), and the derivation of the basic
reproduction number, R,, via the next-generation matrix
approach. A compact two-host reduction provides an
interpretable closed-form for Ry, showing that awareness and
tracing rates directly suppress the effective reproduction potential.
The DFE is locally asymptotically stable when R, < 1 and
unstable  otherwise. Conceptual numerical illustrations
demonstrate that moderate improvements in public awareness
and contact tracing can jointly drive R, below unity, thereby
halting epidemic growth. These findings underscore the synergistic
value of behavioural education, early case detection, and ecological
management in controlling Lassa fever in an endemic setting.

Keywords: Lassa fever; Basic reproduction number; Contact
tracing; Awareness; Mathematical epidemiology; Disease control

policy.

INTRODUCTION
Infectious diseases remain a dominant threat to global public health,
continuing to cause extensive illness and death across all regions of
the world, particularly in low- and middle-income countries where
health systems are often fragile and under-resourced (Jones et al.,
2008; World Health Organization, 2023). Even with notable progress
in vaccination campaigns, therapeutic interventions, and
surveillance infrastructure, the emergence and re-emergence of
epidemic-prone pathogens persist. This persistence is largely driven
by rapid ecological changes, socioeconomic pressures,
demographic transitions, climate variability, and increasing human
population density (Morens and Fauci, 2013). The combination of
these forces creates ecological niches that favor pathogen evolution
and spillover, ensuring that infectious agents remain an ongoing
challenge to global health security.

The twenty-first century has repeatedly demonstrated the
vulnerability of human populations to both novel and re-emerging

infectious agents. Major epidemics—including seasonal and
pandemic influenza, Ebola virus disease, Zika virus infection, and
successive waves of coronavirus outbreaks—have exposed
weaknesses in preparedness and response strategies (Fauci and
Morens, 2012; Park et al., 2019). In this context, mathematical
modeling has become an indispensable scientific tool for describing
the dynamics of infectious disease transmission. Models provide
rigorous theoretical frameworks that enable researchers to
understand the mechanisms of pathogen spread, explore the
potential impact of interventions, and forecast epidemic trajectories
under varying scenarios (Keeling and Rohani, 2011). Among these
approaches, compartmental models—originating from the seminal
susceptible-infectious-recovered (SIR) formulation of (Kermack
and McKendrick, 1927a) remain foundational. Over decades, these
models have been extended to incorporate biological heterogeneity,
environmental drivers, behavioral responses, and stochastic
processes, thereby improving their capacity to capture real-world
disease complexity.

Within the wide spectrum of infectious diseases, viral
hemorrhagic fevers (VHFs) stand out as some of the most lethal
zoonotic threats to human health. VHFs encompass a diverse group
of RNA viruses—including Ebola, Marburg, Lassa fever, and
Crimean-Congo hemorrhagic fever—whose natural maintenance
cycles involve interactions between animal reservoirs and human
populations (Centers for Disease Control and Prevention, 2023).
These pathogens typically cause systemic illness characterized by
vascular dysfunction, immune dysregulation, and severe
multisystem manifestations. Case fatality rates frequently exceed 20
% in severe outbreaks, underscoring their public health importance
(Bausch and Rollin, 2005).

The devastating 2014-2016 Ebola virus outbreak in West
Africa vividly demonstrated the catastrophic potential of VHFs,
resulting in more than 28,000 reported infections and over 11,000
deaths across multiple countries (World Health Organization, 2016).
The crisis revealed critical gaps in early detection, weak health
infrastructure, and delayed international responses, highlighting the
need for proactive surveillance and rapid intervention strategies.
While Ebola has attracted global attention because of its explosive
outbreaks, Lassa fever represents a more insidious but equally
serious threat. Unlike Ebola, Lassa fever is endemic and exhibits
annual recurrence in parts of West Africa, yet it often remains under-
recognized because its early clinical presentation overlaps with
other febrile illnesses such as malaria and typhoid fever (McCormick
etal., 1987; Ogbu et al., 2007).

First identified in 1969 in the town of Lassa, Nigeria (Frame et
al., 1970), Lassa fever is caused by Lassa virus (LASV), a zoonotic
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arenavirus that persists in nature through a reservoir-host
relationship with the multimammate rodent Mastomys natalensis
(Fichet-Calvet and Rogers, 2009). Primary transmission to humans
occurs through direct or indirect contact with rodent excreta, urine,
or saliva, which contaminate food supplies and household
environments. Secondary human-to-human transmission also
occurs, particularly in healthcare settings, through exposure to
blood, bodily fluids, or contaminated surfaces. Unsafe burial
practices further amplify transmission during outbreaks (World
Health Organization, 2022).

The public health burden of Lassa fever is substantial. Each
year, West Africa experiences an estimated 100,000-300,000
infections, resulting in approximately 5,000-10,000 deaths
(Richmond and Baglole, 2003; Shaffer et al., 2019). Nigeria, Sierra
Leone, Liberia, and Guinea bear the greatest reported incidence,
but serological evidence suggests that the virus circulates in a wider
geographic range (Ehichioya et al., 2010). Clinical manifestations
are highly variable, ranging from mild febrile illness to fulminant
hemorrhagic disease with multi-organ involvement (McCormick et
al., 1987). In Nigeria, outbreaks have become increasingly frequent,
with rising annual case counts documented by the Nigeria Centre
for Disease Control (NCDC), posing persistent challenges for
surveillance, early detection, and healthcare system resilience
(Nigeria Centre for Disease Control, 2023).

The persistent endemicity of Lassa fever necessitates
modeling approaches that differ from those used for epidemic
diseases with primarily human-to-human transmission. The
continuous presence of the rodent reservoir means that spillover
events occur regularly, even in the absence of significant human
outbreaks. Standard human-only epidemic models therefore
underestimate the true disease burden and fail to capture the
ecological mechanisms sustaining transmission (Gibb et al., 2017).
Recent empirical work has further highlighted the significance of
individuals identified through contact tracing as critical nodes in the
transmission network (Ajala et al,2024), demonstrating that models
excluding this group may severely misrepresent outbreak potential.

Early modeling efforts incorporated both human and rodent
populations  within  deterministic compartmental frameworks.
Baseline formulations such as the SCIQRD-SI model—
representing Susceptible (S), Contact traced (C), Infected (I),
Quarantined (Q), Recovered (R), and Dead (D) compartments for
humans, alongside Susceptible (S) and Infected (I) compartments
for rodents—have provided valuable insights into the dual-host
ecology of Lassa fever (Agusto, 2013). These models have been
used to evaluate interventions such as rodent population control,
improved case isolation, safe burial practices, and adoption of
personal protective measures (Lo lacono et al., 2015; Gibb et al.,
2017). Nevertheless, key behavioral factors such as risk awareness
and the operational mechanics of contact tracing remain
underrepresented in many of these frameworks.

Contact tracing has proven highly effective in the control of
Ebola, SARS, and COVID-19 by enabling the early identification and
isolation of exposed individuals before they become infectious
(Eames and Keeling, 2003; Kucharski and Edmunds, 2015). In
parallel, public awareness campaigns can significantly alter human
behavior, reducing exposure to risk and shifting susceptible
individuals into an “aware susceptible” class with lower infection
probabilities (Funk et al., 2010). Ignoring these factors limits the
ability of models to realistically evaluate public health interventions.
Incorporating contact tracing and awareness is therefore essential
for designing and assessing cost-effective strategies for Lassa fever
control.

The mathematical foundation for such modeling remains the
compartmental approach introduced by (Kermack and McKendrick,
1927b). Extensions such as the SEIR (Susceptible-Exposed—
Infectious—Recovered) framework accommodate incubation periods
and have been successfully applied to a wide variety of infectious
diseases including influenza (Ferguson et al., 2006), Ebola (Legrand
et al., 2007), HIV (Anderson and May, 1991; Akinyemi et al., 2018),
(Adeniyi et al., 2020), and COVID-19 (Giordano et al., 2020). Within
these frameworks, the next-generation matrix (NGM) method
provides a systematic technique for deriving the basic reproduction
number Ro, which serves as the critical threshold parameter
determining whether a pathogen can invade a population (Van den
Driessche and Watmough, 2002), (Chukwu et al., 2020). Accurate
computation of Ro enables modelers to evaluate intervention
thresholds and to estimate the intensity of control measures needed
to halt transmission.

To address the shortcomings of earlier models, the SECIRDA-
SEI framework has been developed as an advanced extension of
the SEIR family. This structure introduces a richer set of
compartments representing Susceptible (S), Exposed (E), Contact
traced (C), Infectious
(1), Recovered (R), Dead (D), and Aware susceptible (A) individuals
in the human population, while retaining Susceptible (S) and
Exposed/Infectious (E/l) classes for the rodent reservoir. By
explicitly including awareness dynamics and contact tracing, the
model captures the feedback between human behavior and disease
transmission, an area increasingly recognized as critical in
behavioral epidemiology (Funk et al., 2010). Coupled human-
behavior models show that even modest changes in risk perception
and protective practices can dramatically reduce epidemic size
(Epstein et al., 2008), making the inclusion of an awareness
compartment not only theoretically sound but practically essential.

This enhanced model also allows for a more nuanced
representation of dual-host ecology, in which rodent populations
serve as a persistent source of infection even when human-to-
human transmission is suppressed. By integrating ecological,
epidemiological, and behavioral dimensions, the SECIRDA-SEI
framework supports the evaluation of multi-layered intervention
strategies—ranging from rodent control measures to public
education campaigns and efficient contact-tracing operations.

Several studies provide a foundation for this modeling
approach: Agusto (2013) proposed a deterministic two-host model
that shows that reductions in rodent-to-human contact significantly
decrease the basic reproduction number Ro. (Lo lacono et al., 2015)
examined seasonal variation in rodent populations in Sierra Leone
and highlighted the importance of ecological drivers of Lassa virus
transmission. (Gibb et al., 2017) used ecological niche modeling to
map spillover risk across West Africa, offering valuable inputs for
spatially explicit epidemiological models. (Kucharski and Edmunds,
2015) analyzed the effectiveness of contact tracing during Ebola
outbreaks, a concept directly applicable to Lassa fever. (Funk et al.,
2010) explored how public awareness influences epidemic
outcomes, reinforcing the value of including behavioral responses in
model design.

These studies collectively demonstrate that while significant
progress has been made, key gaps remain. Many existing models
still employ simplified host ecology, neglect critical behavioral
drivers, and lack empirical validation using real-time surveillance
data.

Despite decades of research, current Lassa fever models
continue to exhibit notable limitations. Most fail to fully incorporate
behavioral dynamics, often treat contact tracing superficially or omit
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it entirely, and rely on simplified representations of the host-—
reservoir interface. Moreover, many models have limited access to
high-quality longitudinal data, constraining opportunities for
empirical validation and parameter estimation. These deficiencies
hinder the capacity of models to accurately capture the complex,
multi-scale processes driving Lassa fever persistence and spread.

The modified SECIRDA-SEI model was designed specifically
to address these gaps. By integrating ecological drivers,
epidemiological processes, and human behavioral adaptations into
a unified deterministic framework, this model offers a more
comprehensive and realistic representation of Lassa fever
transmission dynamics. Such an approach enables policymakers
and public health practitioners to explore a broader range of
intervention scenarios—including rodent control, enhanced contact
tracing, rapid case isolation, and community education—and to
evaluate their combined effects on disease incidence and outbreak
magnitude.

In summary, infectious diseases continue to exert a profound
toll on global health, and the recurring threat of viral hemorrhagic
fevers underscores the need for innovative modeling frameworks
that capture the interplay of ecology, behavior, and epidemiology.
Lassa fever exemplifies the challenges posed by zoonotic
pathogens with persistent animal reservoirs and complex human
behavioral drivers. The SECIRDA-SEI framework provides an
important step forward by explicitly incorporating contact tracing,
awareness, and dual-host ecology into a single deterministic model.
By overcoming key limitations of earlier approaches, this model
enhances our ability to understand Lassa fever dynamics and to
design evidence-based strategies for its prevention and control.

Model Formulation

Momoh: Susceptible, Contact traced, Infected, Quarantined,
Recovered, Dead - Susceptible Infected Lassa fever Model
Momoh et al. (2020) proposed a deterministic SCIQRD model with
respect to the human population and an SI model with respect to the
vector population. The model divides the human host population into
six compartments and the reservoir population into two
compartments:

Table 1: Description of the variables in the system
Su  Susceptible humans at time. t
Ch  Humans suspected to have had contact with the
infected at time . t
Q:  Quarantined humans at time . t
Ik Infected humans at time . t
Ru  Recovered humans at time . t
D Dead humans at time . t
Sk Susceptible rodents at time . t
IR Infected rodents at time . t

Individuals move from one compartment to the other, and their status
with the disease changes.
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Table 2: Parameters of the Models:

a1 Rate of transmission by infected humans.

a2 Rate of transmission by infected rodents.

as  Rate of transmission by dead bodies of humans not
properly buried.

E Rate of progression to the infected class by humans
suspected to have had contact with the infected but not
successfully contact-traced.

r Rate at which recovered humans become susceptible.

Y1 Humans' recovery rate.

y2  Rate at which the quarantined that show no symptoms.

Yy Quarantine rate of humans successfully contact-traced.

(] Rate of improper burial.

A Quarantine rate of infected humans who could not be
contact-traced before showing symptoms.

Oou  Disease-induced death rate.

Mr  Natural death rate for rodents.

MH  Natural death rate for humans.

Modified Momoh SCIQRD-SI Lassa fever Model

With reference to Momoh (2020) SCIQRD Lassa fever model for the
human population and the SI model for the vector population, when
the level of awareness, self-hygiene, surveillance, and the exposed
measures were not considered. The proposed model under
consideration will divide the model into nine compartments, namely:
To capture the dual-host and behavioural transmission dynamics of
Lassa fever, a deterministc compartmental model of the
Susceptible, Exposed, Contact-traced, Infected, Recovered, Dead,
Awareness, Susceptible, Exposed, Infected (SECIRDA-SEI) type
is developed. The model structure extends the classical SEIR
formulation by incorporating behavioural awareness among
susceptible humans and operational contact tracing among the
exposed-but-not-yet-infectious individuals. This approach facilitates
the simultaneous assessment of biological and behavioral control
mechanisms operating within human and rodent populations.

Human Population Structure
The total human population at time t, denoted by Ny(t), is
subdivided into seven mutually exclusive compartments:
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Ny(t) = Sy() + Ey(O)t Cu(t) + Iy(6) + Ry(t) + Dy(8) +
Au(D),

Susceptible humans acquire infection through contact with
infectious humans, infected rodents, or improperly handled corpses
of deceased individuals. Individuals may move from the susceptible
to aware class atrate ¢ due to awareness campaigns and revert at
rate w when vigilance wanes. Natural mortality occurs at rate py;
while newly recruited susceptibles enter the population at a
constant rate Ay . Recovered individuals lose no immunity
during the time frame considered.

Rodent Population Structure
The total rodent population, Ng(t), is divided into three
epidemiological classes:

Ng(t) = Sg(t) + Ex()*+ Iz(0)

Description of the variables in the system
* §,,~ Susceptible individuals with no specific immunity or
awareness.
* E,-Exposed individuals who have been infected but are
not yet infectious.
. ¢, —Contact-traced individuals identified ~through
surveillance and under follow-up.
* I, —Infectious individuals capable of transmitting the
virus.
* Ry — Recovered individuals with temporary or permanent
immunity.
* Dy — Deceased individuals who remain infectious until safe
burial or decontamination.
*4,, -Informed individuals who modify behaviour to reduce
risk of exposure.
* Sg- Susceptible rodents capable of contracting infection.
* E, —Exposed rodents incubating the virus.
* I, — Infectious rodents shedding the virus through urine,
faeces, or saliva.

Rodents are recruited at rate A, and die naturally at rate pp .
Infected rodents progress from Eg to I atrate a. Noimmunity
is assumed following infection, consistent with experimental
evidence of persistent carrier status in Mastomys natalensis.

Forces of Infection

Transmission between and within species occurs through multiple
pathways. The forces of infection for humans and rodents are
defined as:

Ay = Boly + Pilg + 2Dy, Ag = Baly + Bslg + BaDy,
where:

These expressions represent mass-action contact terms that link
infectious compartments to new exposures.

Model Equations

The full model is governed by the following system of nonlinear
ordinary differential equations:

5;/1 =Ay — (pu + P)Sy — ySy + wAy

©)

E,{I = AySy — (ug + & )Ey

(10)

Ch = £y — (n +¥)Cy

(11)

1;/1 =yYCy— (ug +v +8)ly
(12)

R1/1 =yly — ugRy

(13)

D/ =8Iy — kDy

(14)

Ay = ¢Sy — (uy + w)Ay
(15)

51/3 = Ag — AgSr — UrSR
(16)

E;é = AgSg — (Ug + Q)ER
(17)

I}/e = aEg — prlg
(18)

Table 3: Parameters for the Lassa fever model.

Y Proportion of contact traced infected indiv
¢

4

Awareness rate
Rate of contact traced exposed individuals

uy Natural death of the human host

ugr Natural death of the rodent host

Ay Human recruitment rate

Ap Vector recruitment rate

w Rate of revert to the susceptible class when level of awareness
wanes

6 The Lassa-induced death rate

Po Rate of transmission by infected humans to suscep

B1 Rate of transmission by infected rodents to suscept

B2 Rate of transmission by infected corpse to suscepti

Bs Rate of transmission by infected human to suscepti

Pa Rate of transmission by infected corpse to suscepti

Bs Rate of transmission from infected rodents to susceptible
rodents.

Y  recovery rate of human from lassa fever.

Kk the rate of safe burial or disinfection.

Each parameter represents a biologically meaningful
transition, with ¢ denoting the contact tracing rate of exposed
individuals, W the rate of progression from traced to infectious, y the
recovery rate, § the Lassa-induced death rate, and k the rate of
corpse removal through safe burial or disinfection.

Model Properties and Invariant Region

For biologically meaningful solutions, all state variables must remain
non-negative for t > 0. Letting Ny (t) and Ng(t) denote total
populations, we obtain:

dN, A AN,
Tf’ =Ay —puuyNy — Iy — KDy, d[’”‘ = Ap — purNg.
Thus,
Ay Agp
Nu(t) <=2, Np@t) < =£.
Hy HRr
Hence, the region
. A A
ﬂ={(SH, ..... A H,SR.ER.IR)ERHJZJI\‘VHS—H, )"\-YRS—R}
HH HR

is positively invariant and attracting. All model trajectories
initiated in Q remain bounded and biologically feasible for all t >
0.
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Disease- Free Equilibrium (DFE)

At equilibrium, when there is no infection present in
the system, hence Ey =Cy = Iy
= Dy = Egr = Iz = 0, the remaining equations yield:

a A (w + prr)

‘SH - -
pu(w+ pu + @)

A% — (,’)“\H s ""\R

5

P pgw+pg +0) % up’

5

Thus, the disease-free equilibrium (DFE) is:
DFE = (5};,0,0,0,0,0, A}, 55/0,0)

Computation of the Basic Reproduction Number (Rp)
The next-generation matrix (NGM) approach is employed following
Diekmann et al. (1990) and Van den Driessche and Watmough
(2002). Let the vector of infected compartments be:

T
X = (EHlCH!IHsDH!ERlIR> ’

and express the subsystem as:

X =FX)—v(X),
where F represents the appearance of new infections and V the
transition between infected states.

Detailed derivations of F, V, and V' yield the next-

generation matrix K = FV'1 , whose dominant eigenvalue p(K)
gives the basic reproduction number R, .

Simplified Two-Host Representation

For interpretability, the E; — Cy — Iychain in humans and
the Ex — I chain in rodents can be compressed into effective
infection probabilities:

£ U Q

. - Pr=—""7,
E+pug U+ pn o+ UR
with mean infectious periods 7 = and 7 = ui This
R

PH =

r+up+6)
leads to a two-host next-generation matrix M:

mpgg MMHAR

MmpH MRR

where eachm;; quantifies the expected number of secondary
infectious hosts of type j produced by one infectious host of type
i. The basic reproduction number is:

R, = p(]\/[) _ tr(]v[)+\/tr(.7\;[)2—4det )
(19)

Here, awareness reduces Rp indirectly through Sy, while

enhanced burial rates (k) and tracing (&) directly reduce
secondary transmission.

https://dx.doi.org/10.4314/swj.v20i4.53

Local Stability of the DFE

By the standard threshold theorem of Van den Driessche and
Watmough (2002), the DFE is locally asymptotically stable
whenever Ry < 1and unstable if Ry > 1. This implies that
disease elimination is feasible when the combined effects of awareness,
tracing, and ecological control reduce the effective reproduction
number below unity (Akinyemi et al., 2018).

Comparison with the Baseline SCIQRD-SI Model

Setting ¢ = 0 (no awareness), 8,= B, 0 (no corpse infectivity),

and B3 = 0 (no human-to-rodent transmission) reduces the

present model to the SCIQRD-SI structure studied by Agusto

(2013). Our extended model introduces three critical refinements:
1. inclusion of awareness (¢ > 0) that modifies human
susceptibility,

2. bidirectional human-rodent interactions (B3, Ba4),

3. corpse-mediated infection pathways contributing to
persistent low-level transmission.

These modifications substantially alter the structure of Ry, the
control thresholds, and the system’s sensitivity to public health
interventions.

Interpretation of R, and Control Thresholds

The basic reproduction number, R, , represents the expected
number of new infections generated by one infectious individual in
a completely susceptible population. It serves as a threshold
parameter that determines whether the infection will persist
(Ro < 1) or die out (Ry > 1). In the context of the SECIRDA-
SEIl model, R, integrates biological, ecological, and behavioural
processes governing Lassa fever transmission.

Parameter Contributions and Biological Meaning

From the closed-form expression (19), it is evident that R, depends
explicitly on transmission rates (3;)progression rates (y,a), removal
rates (y,0,k), tracing and awareness rates (), and rodent
demographic parameters (AR ,UR ). Their qualitative effects on
disease persistence are summarised below:

* Human-to-Human Transmission (f3,): Direct person-
to-person contact drives epidemic amplification, especially
in healthcare or household settings. Control measures such
as isolation, barrier nursing, and personal protective
equipment (PPE) act to reduce B,.

* Rodent-to-Human Transmission (f;): This parameter
quantifies zoonotic spillover from infected rodents to
humans through food contamination or environmental
exposure. Its control requires habitat sanitation, rodent-
proof food storage, and vector reduction programmes.

+ Corpse-to-Human Transmission (B, ): Improper
handling or unsafe burial of deceased individuals
contributes ~ significantly to sustained transmission.
Increasing the safe burial rate k effectively reduces this
pathway.

Mathematical Analysis Of A Modified Secirda-Sei Model For Lassa Feve: 1715
Transmission With Contact Tracing And Awareness Campaigns


https://dx.doi.org/10.4314/swj.v20i4.53
http://www.scienceworldjournal.org/

Science World Journal Vol. 20(No 4) 2025 https://dx.doi.org/10.4314/swj.v20i4.53
www.scienceworldjournal.org
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)

Published by Faculty of Science, Kaduna State University

+ Awareness Rate (¢d): Awareness campaigns reduce the
pool of susceptible individuals by promoting behavioural
change and risk avoidance. Mathematically, ¢ decreases

S;; at the DFE, thereby lowering R, . Sustained awareness
efforts are therefore a behavioural analogue of vaccination.

+ Tracing Rate ({): Contact tracing accelerates the
movement of exposed individuals into monitoring or
isolation compartments (Ey — Cy ), reducing the
probability that they become infectious. An increase in ¢
decreases R, both by shortening the infectious period and
by reducing secondary transmission chains.

+ Recovery Rate (y) and Disease-Induced Death (5):
Both rates reduce R, by shortening the mean infectious
period 7. However, improving y through early diagnosis
and treatment yields more sustainable control than relying
on 9, which reflects uncontrolled mortality.

* Rodent Recruitment (Ap) and Mortality (pg): A
higher rodent birthrate or environmental proliferation
increases R, , while enhanced rodent mortality (e.g.,
through ecological control or poisoning) has the opposite

effect. The ratio 2& determines the steady-state rodent
population Sk wh|ch strongly influences the zoonotic
component of transmission.

+ Safe Burial Rate (k): Increasing k reduces the average
duration during which deceased individuals remain
infectious, thereby curtailing both human and rodent
exposure fo corpses.

Composite Interpretation

The structure of M in (19) reveals that R, comprises additive
and multiplicative effects of cross-species and within-species
transmission cycles. When rodent-to-human spillover dominates, the
term mgymyr becomes the primary determinant of epidemic
persistence. Conversely, in settings with strong human-to-human
amplification (e.g., hospital clusters), myy dominates the
spectral radius.

Importantly, R, exhibits nonlinear sensitivity to the awareness
(o) and tracing (§) parameters. A moderate increase in either can
lead to a sharp decline in Ry, as shown in the sensitivity plots
(Figures 1-6). This threshold behaviour implies that awareness and
tracing campaigns need not achieve perfect coverage to yield
substantial epidemiological benefits.

Control Threshold and Policy Implications

Here, S and S denote the equilibrium susceptible
populations of humans and rodents ,respectively, while B, , B, ,
B3, and Bs correspond to the fransmission coefficients across
the four primary infection pathways. The parameters aj and
bi are composite transition rates summarising infection

endemic equilibrium.

Conceptual Numerical lllustration

The analytical threshold Ry = 1 separates epidemic growth from
elimination. Thus:

If Ry < 1, the disease dies out. If R, > 1, the disease persists
endemically. From a control perspective, reducing R, below unity
can be achieved through:

1. Behavioural intervention: Enhancing awareness campaigns

to reduce ¢_1 and increase risk aversion.

2. Operational response: Strengthening contact tracing
efficiency (€) and rapid case isolation.

3. Ecological control: Reducing rodent abundance (Ag) and
increasing mortality (mg ).

4. Clinical management: Improving treatment capacity (y)
and safe burial practices (k).

These findings highlight that the path to Ry < 1 requires
integrated strategies combining ecological control, behavioural
adaptation, and institutional response. Awareness alone can flatten
infection curves, but its synergy with effective contact tracing and
ecological management ensures sustainable control in endemic
regions. Consequently, R, serves not only as a mathematical
threshold but also as a comprehensive metric for evaluating public
health preparedness and resilience.

RESULTS AND DISCUSSION

This section presents analytical and conceptual numerical results from
the modified SECIRDA- SEI model. The analytical derivations
establish the equilibrium states and stability conditions, while
the numerical illustrations demonstrate how awareness and
contact tracing influence the basic reproduction number (R, ),
epidemic trajectories, and control outcomes for Lassa fever.

Analytical Results
The model yields a disease-free equilibrium (DFE) where all
infected compartments vanish. Applying the next-generation
matrix (NGM) approach (Diekmann et al., 1990; van den
Driessche and Watmough, 2002), the basic reproduction number,
Ry, is obtained as:

Ro= Ryy * Ryr *+ Ry *+ Rgpr,

where each component represents the expected number of
secondary infections transmitted through specific host pathways:

530St 515 3 S*
Rum = - 0 HaRHR— - HJ?RH— '1

aias by as

358*

blb‘)

progression, recovery, and mortality processes within the host
populations.

At the DFE, the condition Ry < 1 guarantees local asymptotic
stability, implying that each infected individual produces fewer than
one secondary infection on average. Conversely, when Ry >
1, the infection can invade and persist within the population,

signifying an

To examine the qualitative influence of awareness and contact
tracing, a set of hypothetical parameter values was adopted based
on published Lassa fever transmission studies (Agusto, 2013; Ajala
et al.,, 2024). The baseline parameters were defined as:

Mathematical Analysis Of A Modified Secirda-Sei Model For Lassa Feve: 1716
Transmission With Contact Tracing And Awareness Campaigns


https://dx.doi.org/10.4314/swj.v20i4.53
http://www.scienceworldjournal.org/

Science World Journal Vol. 20(No 4) 2025
www.scienceworldjournal.org

ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)
Published by Faculty of Science, Kaduna State University

https://dx.doi.org/10.4314/swj.v20i4.53

Bo =045 B, =025 B;=035 Bs =015 py=0.01,
pug =0.03, y=0.12, & = 0.04,
with awareness and contact-tracing rates initially setto ¢ =0.02
and ¢ = 0.03. Under these baseline conditions, R, = 1.86,
indicating potential disease persistence.

When the awareness rate ¢ increases to 0.06—simulating
intensified risk communication and behavioural adaptation— the
susceptible proportion Sj; decreases substantially, reducing R,
to approximately 1.12 (a 40% decline). Similarly, increasing the
contact-tracing rate § from 0.03 to 0.08 reduces the latent infectious
period and drives R, below unity (R, = 0.93), representing
effective epidemic suppression. Thus, synergistic implementation of
awareness and contact tracing can theoretically halt Lassa fever
transmission in endemic zones.

Numerical Experiments, Sensitivity, and Policy
Implications

A series of conceptual numerical experiments was conducted to
further explore the epidemiological behaviour of the modified
SECIRDA-SEI model. These experiments were not empirical fits
but qualitative simulations to illustrate disease dynamics
consistent with biological realism (Adewale et al., 2016; Musa et
al,, 2020; Ajala et al., 2024).

arative Sensitivity of Ry to Awareness (@) and Contact Tracing (£)

100 m = e s e et e e e e e e e e e e e m e e — -

Intervention Type
— Awareness (@)
= Contact Tracing (§)

Basic Reproduction Number (Ry)

0.025

0.05C 0075
Rate Parameter (@ or §)

Figure 1. Comparative sensitivity of the basic reproduction
number (R,) to awareness (¢) and contact tracing (¢) rates. Both
parameters exhibit a nonlinear decline in R, , with contact tracing
showing a steeper suppressive effect. The red dashed line
represents the epidemic threshold

(Ro=1).

Sensitivity of Ry to Key Epidemiological Parameters

ecruitment)
s (Rodent-Death)

Basic Reproduction Number Ry

Parameter Value

Figure 2: Sensitivity of the basic reproduction number (R,) to
key epidemiological parameters: human-to-human (8,), rodent-
to-human (B;), corpse-to-human (B,), recovery (y), disease-

induced death (5), rodent recruitment (A ), and rodent death (uz).
The red dashed line denotes the epidemic threshold Ry = 1.
Increasing Ag drives R, upward, while higher y, 8, and pg
reduce transmission potential.

Temporal Infection Dynamics.  Figure 3 shows the time
evolution of infectious humans (Iy) under three intervention
scenarios: (i) no intervention, (i) awareness only, and (i)
combined awareness and contact tracing. Without control
measures, the infection trajectory exhibits exponential growth,
whereas public awareness campaigns (blue curve) substantially
flatten the epidemic curve. The combined strategy (red curve)
yields the lowest infection peak, demonstrating how behavioural
and operational responses synergistically mitigate outbreak
intensity and duration.

rative Infection Dynamics under Intervention Scenarios

Scenario

= Awareness + Contact Tracing
- Awareness Only

= No Intervention

Proportion of Infectious Individuals (I_H)

Time (days)
Figure 3: Temporal evolution of infectious humans (Iy) under
different intervention sce- narios. Awareness and combined
strategies significantly reduce infection peaks and shorten epidemic
duration.

Phase Portrait Analysis. The (Sy, Iy) phase plane trajectory
in Figure 4 demonstrates convergence toward the DFE,
validating the analytical stability condition (R, < 1). The
monotonic decline in Iy with diminishing Sy confirms that the
susceptible population progressively depletes as the infection
subsides.

Phase Portrait of Susceptible=Infectious Dynamics

Infectious Humans (I_H)

Susceptible Humans (S_H) ‘

Figure 4: Phase portrait of the susceptible-infectious subsystem
showing convergence toward the disease-free equilibrium,
confirming local stability of the model.
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Combined Sensitivity of R, to Awareness and Contact
Tracing. Figure 5 presents a heatmap of the combined effects
of ¢ and ¢ on R, .Redregions correspond to high transmission
potential, while blue regions signify successful control (R, < 1).
The inverse nonlinear gradient across the contour map
illustrates how modest improvements in both awareness and
contact tracing can jointly push R, below the epidemic threshold.

Combined Effect of Awareness (@) and Contact Tracing (§) on Ry

0.100

Contact Tracing Rate (£)

0.000 0025 0.075 0.100

Awareness Rate (@)

Figure 5: Heatmap showing the joint effect of awareness
(9) and contact tracing (€) on the basic reproduction number
(Ro )- Red regions correspond to high R, values, while blue
areas indicate effective epidemic suppression (R, < 1)
insights into actionable conclusions and policy directions.

Global Sensitivity (PRCC Analysis). Figure 6 presents
Partial Rank Correlation Co- efficients (PRCCs) of R, with
respect to model parameters. Positive coefficients indicate
amplifying effects on transmission, while negative coefficients
denote suppressive impacts. The most influential positive
parameters were Sy, Ar, and S, underscoring the importance
of human-to-human transmission and rodent demography.
Conversely, y, 8, and py exhibited strong negative correlations,
highlighting the epidemiological value of improved recovery rates,
early case management, and ecological rodent control.

Partial Rank Correlation Coefficients (PRCC) for R,

Effect Direction

Negative
Positive

Parameter

P _

04 04

PRCC Value
Figure 6: Global sensitivity analysis showing Partial Rank
Correlation Coefficients (PRCCs) of R, with respect to model
parameters. Positive bars indicate parameters that increase R,
when increased; negative bars indicate parameters that suppress
transmission.

The sensitivity indices and partial correlation coefficients
demonstrated that rodent recruitment (A ) and human-human
transmission (S,) are dominant amplifiers of Ry , whereas
recovery rate (y) and natural rodent mortality (uz) act as
suppressive parameters.

Bifurcation Behaviour. The conceptual bifurcation diagram
in Figure 7 reveals a non- linear dependence of R, onthe human-
to-human transmission rate (8,). As 8, increases, R, surpasses
the epidemic threshold, signalling a transition from
containment to endemic persistence. This behaviour
emphasises the criticality of reducing direct contact and
improving healthcare hygiene protocols in controlling
outbreaks.

Bifurcation of R, with respect to 3,

Basic Reproduction Number Ry

)

0.25 050 75
Human-to-Human Transmission Rate B,

Figure 7: Conceptual bifurcation diagram showing how Rp
changes nonlinearly with the human-to-human transmission rate
(Bo )- The red dashed line indicates the critical threshold R, =
1.

Policy Implications. The collective results across Figures 3-
7 confirm that behavioural, clinical, and ecological interventions
interact  synergistically in suppressing epidemic potential.
Awareness campaigns indirectly reduce transmission by promoting
protective behaviour, while contact tracing provides direct
suppression through isolation of latent and infectious individuals.
Furthermore, rodent population control—through habitat
sanitation, trapping, or predator reintroduction—acts as a long-
term stabilising mechanism that prevents re- emergence. These
findings reinforce the policy need for a multi-sectoral. One Health
approach that integrates human, environmental, and veterinary
surveillance to sustainably reduce Lassa fever burden in endemic
West African settings.

The analytical derivations and numerical experiments jointly
provide a coherent picture of Lassa fever dynamics under the
influence of behavioural and operational interventions. The
equilibrium and sensitivity analyses confirmed the mathematical
consistency of the modified SECIRDA-SEI framework, while the
numerical simulations illustrated its biological realism and policy
relevance. Together, these results bridge theoretical epidemiology
and applied public health planning.

Specifically, the reduction of the basic reproduction number (R )
under incremental in- creases in awareness (¢) and contact tracing
(€) underscores the complementary nature of behavioural change
and surveillance efficiency. The phase portrait and bifurcation
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plots confirm that improved awareness and fracing rates can shift
the system from an endemic equilibrium toward a disease-free
state. Likewise, the PRCC analysis quantitatively ranked
parameter influence, highlighting that interventions targeting
transmission pathways and rodent demography yield the highest
impact on outbreak containment.

These integrated findings inform practical disease management
strategies and set the stage for real-world calibration using
empirical data. The next section synthesises these insights into
actionable conclusions and policy directions.

Conclusion

This study developed and analysed a modified SECIRDA-SEI
compartmental model for

Lassa fever transmission that explicitly incorporates two pivotal
intervention mechanisms—public awareness and contact tracing
within a two-host (human-rodent) epidemiological system.

By extending the classical SEIR structure, the model accounts
for behavioural adaptation, ecological transmission, and the
dynamics of post-mortem infectivity, thereby offering a more realistic
representation of the disease ecology.

Analytical results derived from the next-generation matrix (NGM)
framework established the disease-free equilibrium and provided a
closed-form expression for the basic reproduction number, R, .
Both theoretical and numerical analyses confirmed that awareness
and contact tracing inversely affect R, while corpse-mediated and
rodent-human transmission channels exert positive feedback on
disease persistence. The sensitivity indices and partial correlation
coefficients demonstrated that rodent recruitment (Ag) and human-
human transmission Syare dominant amplifiers of R,, whereas
recovery rate (y) and natural rodent mortality (1) act as suppressive
parameters.

Conceptual simulations further revealed that doubling the

awareness rate could reduce R, by nearly 40%, while enhanced
contact tracing could drive R, below unity, indicating epidemic
control. The phase portraits and bifurcation diagrams supported
the analytical stability conditions, confirming that improved
awareness and tracing shift the system toward the disease-free
equilibrium.  Importantly, these findings validate the dual role of
social behaviour and operational capacity in epidemic
mitigation,  especially in  resource-limited seftings where
pharmaceutical interventions remain scarce.
From a policy standpoint, the results highlight that behavioural
education, early case detection, and rodent population control
should be pursued concurrently for sustainable disease elimination.
Awareness campaigns indirectly lower transmission through
behaviour modification, while contact tracing directly isolates
latent and infectious individuals.  Ecological interventions
targeting rodent demography provide an additional buffer that
reduces reinfection risk. This triad of behavioural, operational,
and ecological strategies aligns with the One Health approach,
reinforcing intersectoral collaboration between human and
veterinary public health agencies.

Future research will focus on parameter estimation using
Nigeria Centre for Disease Control (NCDC) surveillance data,
uncertainty quantification, and optimal control formulations to
identify cost-effective combinations of interventions. Empirical
calibration will also enable the integration of seasonality,
environmental variability, and spatial heterogeneity into the

model. Such extensions will enhance predictive accuracy and
facilitate real-time outbreak response planning.

In summary, the modified SECIRDA-SEI model provides a robust
theoretical and computation

framework for understanding and mitigating Lassa fever
transmission. By quantifying the interplay between human
behaviour, contact tracing efficiency, and ecological factors, this
work contributes not only to mathematical epidemiology but also
to the formulation of evidence-based public health strategies for
endemic West African regions.

Appendix A. Full Jacobian at the
Disease-Free Equilibrium
Let the full state vector be

Z = (SH' EH' CH' IH' RH' DH'AH' SR' ER' IR)T.
Recall the forces of infection:

A = Boly + Bilg + B2Dy » Ag = Bsly *+ Bslg + Dy,
and define:

ay =&+py, A TYruy, az =y tpy
d, by =a+tug, by =pg.

At the disease-free equilibrium (DFE) we have
Nplotpg) oy

=

W

LI Y

The Jacobian J = [9fi/dzj] of the full 10-dimensional
system evaluated at the DFE, in the variable order above,

IS:
J(E)
—(un + @) 0 0 —BoSh 0 —B2Sh w 0 0 —BiSi
0 —a 0 RSy 0 BSi 0 0 0 BSi
0 & —a, 0 0 0 0 0 0 0
0 0 % -az 0 0 0 0 0 0
- 0 0o 0 y o~y 0 0 0 0 0
- 0 0 0 5 0 —K 0 0 0 0
¢ 0 0 0 0 0 —(uz+w) 0 0 0
0 0 0 —BSi 0 -BS; 0 0 —BsSi
0 0 0 BSi 0 BS; 0 0 -b  BsSi
0 0 0 0 0 0 0 0 a —b,
Notes.
« Row 1 corresponds to dSy /dt = Ay -AxSy -(uy
+¢d) Sy twAy; at the DFE, 15 = 0.
+ Row 8 corresponds to dSp/dt = Ag-AxSg - UrSk;
at the DFE, Az = 0, so d/dSR = -UR.
+ The block structure is evident if we partition J as J =
Jun  Jur s
, Where Jun ER
Jri  Jrr
(human-only), Jee € R3S  (rodentonly), and the off-
diagonal blocks capture cross-species transmission.
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