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ABSTRACT  
This study develops and analyses a deterministic Susceptible 
(S), Exposed (E), Contact traced (C), Infectious (I), Recovered (R), 
Dead (D), and Aware susceptible (A) individuals in the human 
population, Susceptible (S) and Exposed/Infectious (E/I) rodent 
population (SECIRDA-SEI) model for Lassa fever transmission 
that explicitly incorporates (i) contact tracing of exposed-but-
not-yet- infectious individuals,  ( ii)  public awareness interventions 
that divert susceptible individuals into a low-risk awareness class,  
and  (iii)  multiple infection routes  (human–human,  rodent-human,  
and corpse-human/rodent).  Analytical results establish the non-
negativity and boundedness of solutions, the existence of a 
disease-free equilibrium (DFE), and the derivation of the basic 
reproduction number,  𝑅0,  via the next- generation matrix 
approach.   A  compact two-host reduction provides an 
interpretable closed-form for 𝑅0,  showing that awareness and 
tracing rates directly suppress the effective reproduction potential.  
The DFE is locally asymptotically stable when 𝑅0  < 1 and 
unstable otherwise.  Conceptual numerical illustrations 
demonstrate that moderate improvements in public awareness 
and contact tracing can jointly drive 𝑅0  below unity, thereby 
halting epidemic growth. These findings underscore the synergistic 
value of behavioural education, early case detection, and ecological 
management in controlling Lassa fever in a n  endemic setting. 
 
Keywords: Lassa fever; Basic reproduction number; Contact 
tracing; Awareness; Mathematical epidemiology; Disease control 
policy. 
 
INTRODUCTION 
Infectious diseases remain a dominant threat to global public health, 
continuing to cause extensive illness and death across all regions of 
the world, particularly in low- and middle-income countries where 
health systems are often fragile and under-resourced (Jones et al., 
2008; World Health Organization, 2023). Even with notable progress 
in vaccination campaigns, therapeutic interventions, and 
surveillance infrastructure, the emergence and re-emergence of 
epidemic-prone pathogens persist. This persistence is largely driven 
by rapid ecological changes, socioeconomic pressures, 
demographic transitions, climate variability, and increasing human 
population density (Morens and Fauci, 2013). The combination of 
these forces creates ecological niches that favor pathogen evolution 
and spillover, ensuring that infectious agents remain an ongoing 
challenge to global health security. 

The twenty-first century has repeatedly demonstrated the 
vulnerability of human populations to both novel and re-emerging 

infectious agents. Major epidemics—including seasonal and 
pandemic influenza, Ebola virus disease, Zika virus infection, and 
successive waves of coronavirus outbreaks—have exposed 
weaknesses in preparedness and response strategies (Fauci and 
Morens, 2012; Park et al., 2019). In this context, mathematical 
modeling has become an indispensable scientific tool for describing 
the dynamics of infectious disease transmission. Models provide 
rigorous theoretical frameworks that enable researchers to 
understand the mechanisms of pathogen spread, explore the 
potential impact of interventions, and forecast epidemic trajectories 
under varying scenarios (Keeling and Rohani, 2011). Among these 
approaches, compartmental models—originating from the seminal 
susceptible–infectious–recovered (SIR) formulation of (Kermack 
and McKendrick, 1927a) remain foundational. Over decades, these 
models have been extended to incorporate biological heterogeneity, 
environmental drivers, behavioral responses, and stochastic 
processes, thereby improving their capacity to capture real-world 
disease complexity. 

Within the wide spectrum of infectious diseases, viral 
hemorrhagic fevers (VHFs) stand out as some of the most lethal 
zoonotic threats to human health. VHFs encompass a diverse group 
of RNA viruses—including Ebola, Marburg, Lassa fever, and 
Crimean-Congo hemorrhagic fever—whose natural maintenance 
cycles involve interactions between animal reservoirs and human 
populations (Centers for Disease Control and Prevention, 2023). 
These pathogens typically cause systemic illness characterized by 
vascular dysfunction, immune dysregulation, and severe 
multisystem manifestations. Case fatality rates frequently exceed 20 
% in severe outbreaks, underscoring their public health importance 
(Bausch and Rollin, 2005). 

The devastating 2014–2016 Ebola virus outbreak in West 
Africa vividly demonstrated the catastrophic potential of VHFs, 
resulting in more than 28,000 reported infections and over 11,000 
deaths across multiple countries (World Health Organization, 2016). 
The crisis revealed critical gaps in early detection, weak health 
infrastructure, and delayed international responses, highlighting the 
need for proactive surveillance and rapid intervention strategies. 
While Ebola has attracted global attention because of its explosive 
outbreaks, Lassa fever represents a more insidious but equally 
serious threat. Unlike Ebola, Lassa fever is endemic and exhibits 
annual recurrence in parts of West Africa, yet it often remains under-
recognized because its early clinical presentation overlaps with 
other febrile illnesses such as malaria and typhoid fever (McCormick 
et al., 1987; Ogbu et al., 2007). 

First identified in 1969 in the town of Lassa, Nigeria (Frame et 
al., 1970), Lassa fever is caused by Lassa virus (LASV), a zoonotic 
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arenavirus that persists in nature through a reservoir–host 
relationship with the multimammate rodent Mastomys natalensis 
(Fichet-Calvet and Rogers, 2009). Primary transmission to humans 
occurs through direct or indirect contact with rodent excreta, urine, 
or saliva, which contaminate food supplies and household 
environments. Secondary human-to-human transmission also 
occurs, particularly in healthcare settings, through exposure to 
blood, bodily fluids, or contaminated surfaces. Unsafe burial 
practices further amplify transmission during outbreaks (World 
Health Organization, 2022). 

The public health burden of Lassa fever is substantial. Each 
year, West Africa experiences an estimated 100,000–300,000 
infections, resulting in approximately 5,000–10,000 deaths 
(Richmond and Baglole, 2003; Shaffer et al., 2019). Nigeria, Sierra 
Leone, Liberia, and Guinea bear the greatest reported incidence, 
but serological evidence suggests that the virus circulates in a wider 
geographic range (Ehichioya et al., 2010). Clinical manifestations 
are highly variable, ranging from mild febrile illness to fulminant 
hemorrhagic disease with multi-organ involvement (McCormick et 
al., 1987). In Nigeria, outbreaks have become increasingly frequent, 
with rising annual case counts documented by the Nigeria Centre 
for Disease Control (NCDC), posing persistent challenges for 
surveillance, early detection, and healthcare system resilience 
(Nigeria Centre for Disease Control, 2023). 

The persistent endemicity of Lassa fever necessitates 
modeling approaches that differ from those used for epidemic 
diseases with primarily human-to-human transmission. The 
continuous presence of the rodent reservoir means that spillover 
events occur regularly, even in the absence of significant human 
outbreaks. Standard human-only epidemic models therefore 
underestimate the true disease burden and fail to capture the 
ecological mechanisms sustaining transmission (Gibb et al., 2017). 
Recent empirical work has further highlighted the significance of 
individuals identified through contact tracing as critical nodes in the 
transmission network (Ajala et al,2024), demonstrating that models 
excluding this group may severely misrepresent outbreak potential. 

Early modeling efforts incorporated both human and rodent 
populations within deterministic compartmental frameworks. 
Baseline formulations such as the SCIQRD–SI model—
representing Susceptible (S), Contact traced (C), Infected (I), 
Quarantined (Q), Recovered (R), and Dead (D) compartments for 
humans, alongside Susceptible (S) and Infected (I) compartments 
for rodents—have provided valuable insights into the dual-host 
ecology of Lassa fever (Agusto, 2013). These models have been 
used to evaluate interventions such as rodent population control, 
improved case isolation, safe burial practices, and adoption of 
personal protective measures (Lo Iacono et al., 2015; Gibb et al., 
2017). Nevertheless, key behavioral factors such as risk awareness 
and the operational mechanics of contact tracing remain 
underrepresented in many of these frameworks. 

Contact tracing has proven highly effective in the control of 
Ebola, SARS, and COVID-19 by enabling the early identification and 
isolation of exposed individuals before they become infectious 
(Eames and Keeling, 2003; Kucharski and Edmunds, 2015). In 
parallel, public awareness campaigns can significantly alter human 
behavior, reducing exposure to risk and shifting susceptible 
individuals into an “aware susceptible” class with lower infection 
probabilities (Funk et al., 2010). Ignoring these factors limits the 
ability of models to realistically evaluate public health interventions. 
Incorporating contact tracing and awareness is therefore essential 
for designing and assessing cost-effective strategies for Lassa fever 
control. 

The mathematical foundation for such modeling remains the 
compartmental approach introduced by (Kermack and McKendrick, 
1927b). Extensions such as the SEIR (Susceptible–Exposed–
Infectious–Recovered) framework accommodate incubation periods 
and have been successfully applied to a wide variety of infectious 
diseases including influenza (Ferguson et al., 2006), Ebola (Legrand 
et al., 2007), HIV (Anderson and May, 1991; Akinyemi et al., 2018), 
(Adeniyi et al., 2020), and COVID-19 (Giordano et al., 2020). Within 
these frameworks, the next-generation matrix (NGM) method 
provides a systematic technique for deriving the basic reproduction 
number R0, which serves as the critical threshold parameter 
determining whether a pathogen can invade a population (Van den 
Driessche and Watmough, 2002), (Chukwu et al., 2020). Accurate 
computation of R0 enables modelers to evaluate intervention 
thresholds and to estimate the intensity of control measures needed 
to halt transmission. 

To address the shortcomings of earlier models, the SECIRDA–
SEI framework has been developed as an advanced extension of 
the SEIR family. This structure introduces a richer set of 
compartments representing Susceptible (S), Exposed (E), Contact 
traced (C), Infectious 
(I), Recovered (R), Dead (D), and Aware susceptible (A) individuals 
in the human population, while retaining Susceptible (S) and 
Exposed/Infectious (E/I) classes for the rodent reservoir. By 
explicitly including awareness dynamics and contact tracing, the 
model captures the feedback between human behavior and disease 
transmission, an area increasingly recognized as critical in 
behavioral epidemiology (Funk et al., 2010). Coupled human-
behavior models show that even modest changes in risk perception 
and protective practices can dramatically reduce epidemic size 
(Epstein et al., 2008), making the inclusion of an awareness 
compartment not only theoretically sound but practically essential. 

This enhanced model also allows for a more nuanced 
representation of dual-host ecology, in which rodent populations 
serve as a persistent source of infection even when human-to-
human transmission is suppressed. By integrating ecological, 
epidemiological, and behavioral dimensions, the SECIRDA–SEI 
framework supports the evaluation of multi-layered intervention 
strategies—ranging from rodent control measures to public 
education campaigns and efficient contact-tracing operations. 

Several studies provide a foundation for this modeling 
approach: Agusto (2013) proposed a deterministic two-host model 
that shows that reductions in rodent-to-human contact significantly 
decrease the basic reproduction number R0. (Lo Iacono et al., 2015) 
examined seasonal variation in rodent populations in Sierra Leone 
and highlighted the importance of ecological drivers of Lassa virus 
transmission. (Gibb et al., 2017) used ecological niche modeling to 
map spillover risk across West Africa, offering valuable inputs for 
spatially explicit epidemiological models. (Kucharski and Edmunds, 
2015) analyzed the effectiveness of contact tracing during Ebola 
outbreaks, a concept directly applicable to Lassa fever. (Funk et al., 
2010) explored how public awareness influences epidemic 
outcomes, reinforcing the value of including behavioral responses in 
model design. 

These studies collectively demonstrate that while significant 
progress has been made, key gaps remain. Many existing models 
still employ simplified host ecology, neglect critical behavioral 
drivers, and lack empirical validation using real-time surveillance 
data. 

Despite decades of research, current Lassa fever models 
continue to exhibit notable limitations. Most fail to fully incorporate 
behavioral dynamics, often treat contact tracing superficially or omit 
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it entirely, and rely on simplified representations of the host–
reservoir interface. Moreover, many models have limited access to 
high-quality longitudinal data, constraining opportunities for 
empirical validation and parameter estimation. These deficiencies 
hinder the capacity of models to accurately capture the complex, 
multi-scale processes driving Lassa fever persistence and spread. 

The modified SECIRDA–SEI model was designed specifically 
to address these gaps. By integrating ecological drivers, 
epidemiological processes, and human behavioral adaptations into 
a unified deterministic framework, this model offers a more 
comprehensive and realistic representation of Lassa fever 
transmission dynamics. Such an approach enables policymakers 
and public health practitioners to explore a broader range of 
intervention scenarios—including rodent control, enhanced contact 
tracing, rapid case isolation, and community education—and to 
evaluate their combined effects on disease incidence and outbreak 
magnitude. 

In summary, infectious diseases continue to exert a profound 
toll on global health, and the recurring threat of viral hemorrhagic 
fevers underscores the need for innovative modeling frameworks 
that capture the interplay of ecology, behavior, and epidemiology. 
Lassa fever exemplifies the challenges posed by zoonotic 
pathogens with persistent animal reservoirs and complex human 
behavioral drivers. The SECIRDA–SEI framework provides an 
important step forward by explicitly incorporating contact tracing, 
awareness, and dual-host ecology into a single deterministic model. 
By overcoming key limitations of earlier approaches, this model 
enhances our ability to understand Lassa fever dynamics and to 
design evidence-based strategies for its prevention and control. 
 
Model Formulation 
Momoh: Susceptible, Contact traced, Infected, Quarantined, 
Recovered, Dead - Susceptible Infected Lassa fever Model 
Momoh et al. (2020) proposed a deterministic SCIQRD model with 
respect to the human population and an SI model with respect to the 
vector population. The model divides the human host population into 
six compartments and the reservoir population into two 
compartments: 
 
Table 1: Description of the variables in the system 

SH  Susceptible humans at time. t  

CH  Humans suspected to have had contact with the 
infected at time . t  

QH  Quarantined humans at time . t  

IH  Infected humans at time . t 

RH  Recovered humans at time . t  

D Dead humans at time . t  

SR Susceptible rodents at time . t  

IR Infected rodents at time . t  

 
Individuals move from one compartment to the other, and their status 
with the disease changes. 
 

𝑆𝐻
/
= 𝛽1 + 𝛾2𝑄𝐻 + 𝛾𝑅𝐻 − (𝛼1𝑆𝐻𝐼𝐻 + 𝛼2𝑆𝐻𝐼𝑅 + 𝛼3𝑆𝐻𝐷)

− 𝜇𝐻𝑆𝐻                                          (1) 

𝐶𝐻
/

= 𝛼1𝑆𝐻𝐼𝐻 + 𝛼2𝑆𝐻𝐼𝑅 + 𝛼3𝑆𝐻𝐷
− (𝜀 + 𝜓 + 𝜇𝐻)𝐶𝐻                                                                      (2) 

𝐼𝐻
/

= 𝜀𝐶𝐻
− (𝛿 + 𝛿𝐻
+ 𝜇𝐻)𝐼𝐻                                                                       (3) 

𝑄𝐻
/

= 𝜓𝐶𝐻 + 𝛿𝐼𝐻
− (𝛾1 + 𝛾2 + 𝛿𝐻
+ 𝜇𝐻)𝑄𝐻                                                                           (4) 

𝑅𝐻
/

= 𝛾1𝑄𝐻
− (𝛾 + 𝜇𝐻)𝑅𝐻                                                                                (5) 

𝐷𝐻
/

= 𝛿𝐻𝐼𝐻 + 𝛿𝐻𝑄𝐻
− 𝜃𝐷                                                                                      (6) 

𝑆𝑅
/

= 𝛽2 − (𝛼1𝐼𝐻 + 𝛼3𝐷)𝑆𝑅
− 𝜇𝑅𝑆𝑅                                                                                   (7) 

𝐼𝑅
/

= (𝛼1𝐼𝐻 + 𝛼3𝐷)𝑆𝑅
− 𝜇𝑅𝐼𝑅                                                                                        (8) 
 
Table 2: Parameters of the Models: 

α1 Rate of transmission by infected humans.  

α2 Rate of transmission by infected rodents.  

α3 Rate of transmission by dead bodies of humans not 
properly buried.  

Ε Rate of progression to the infected class by humans 
suspected to have had contact with the infected but not 
successfully contact-traced.  

Γ Rate at which recovered humans become susceptible.  

γ1 Humans' recovery rate.  

γ2 Rate at which the quarantined that show no symptoms.  

Ψ Quarantine rate of humans successfully contact-traced.  

Θ Rate of improper burial.  

Δ Quarantine rate of infected humans who could not be 
contact-traced before showing symptoms.  

δH Disease-induced death rate.  

µR Natural death rate for rodents.  

µH Natural death rate for humans.  

 
Modified Momoh SCIQRD-SI Lassa fever Model 
With reference to Momoh (2020) SCIQRD Lassa fever model for the 
human population and the SI model for the vector population, when 
the level of awareness, self-hygiene, surveillance, and the exposed 
measures were not considered. The proposed model under 
consideration will divide the model into nine compartments, namely: 
To capture the dual-host and behavioural transmission dynamics of 
Lassa fever, a deterministic compartmental model of the 
Susceptible, Exposed, Contact-traced, Infected, Recovered, Dead, 
Awareness, Susceptible, Exposed, Infected (SECIRDA–SEI) type 
is developed.  The model structure extends the classical SEIR 
formulation by incorporating behavioural awareness among 
susceptible humans and operational contact tracing among the 
exposed-but-not-yet-infectious individuals. This approach facilitates 
the simultaneous assessment of biological and behavioral control 
mechanisms operating within human and rodent populations. 
 
Human Population Structure 
The total human population at time t,  denoted by 𝑁𝐻(𝑡),  is 
subdivided into seven mutually exclusive compartments: 
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𝑁𝐻(𝑡) =  𝑆𝐻(𝑡) +  𝐸𝐻(𝑡)+  𝐶𝐻(𝑡) +  𝐼𝐻(𝑡) +  𝑅𝐻(𝑡) +  𝐷𝐻(𝑡) +  

𝐴𝐻(𝑡),  
Susceptible humans acquire infection through contact with 
infectious humans, infected rodents, or improperly handled corpses 
of deceased individuals. Individuals may move from the susceptible 
to aware class at rate  𝜙  due to awareness campaigns and revert at 

rate 𝜔 when vigilance wanes. Natural mortality occurs at rate 𝜇𝐻  , 
while newly recruited susceptibles enter the population at a 
constant rate Λ𝐻   .  Recovered individuals lose no immunity 
during the time frame considered. 
 
Rodent Population Structure 
The total rodent population, 𝑁𝑅(𝑡), is divided into three 
epidemiological classes: 
 
𝑁𝑅(𝑡) =  𝑆𝑅(𝑡) +  𝐸𝑅(𝑡)+  𝐼𝑅(𝑡) 
  
Description of the variables in the system 

•  𝑆𝐻- Susceptible individuals with no specific immunity or 

awareness. 
•  𝐸𝐻- Exposed individuals who have been infected but are 

not yet infectious. 
     •  𝐶𝐻 −Contact-traced individuals identified through 

surveillance and under follow-up. 
• 𝐼𝐻 −Infectious individuals capable of transmitting the 

virus. 
•  𝑅𝐻 − Recovered individuals with temporary or permanent 

immunity.  
     •  𝐷𝐻 − Deceased individuals who remain infectious until safe 

burial or decontamination. 
•𝐴𝐻  - Informed individuals who modify behaviour to reduce 

risk of exposure. 
•  𝑆𝑅-  Susceptible rodents capable of contracting infection. 
•  𝐸𝑅 −Exposed rodents incubating the virus. 
•  𝐼𝑅 − Infectious rodents shedding the virus through urine, 

faeces, or saliva. 
 
Rodents are recruited at rate Λ𝑅    and die naturally at rate 𝜇𝑅 . 

Infected rodents progress from 𝐸𝑅 to 𝐼𝑅   at rate α.   No immunity 
is assumed following infection,  consistent with experimental 
evidence of persistent carrier status i n  M a s t o m y s  n a t a l e n s i s .  
 
Forces of Infection 
Transmission between and within species occurs through multiple 
pathways.  The forces of infection for humans and rodents are 
defined as: 
𝜆𝐻 =  𝛽0𝐼𝐻 +  𝛽1𝐼𝑅 + 𝛽2𝐷𝐻 ,  𝜆𝑅 =  𝛽3𝐼𝐻 +  𝛽5𝐼𝑅 + 𝛽4𝐷𝐻,  
where: 
These expressions represent mass-action contact terms that link 
infectious compartments to new exposures. 
 
Model Equations 
The full model is governed by the following system of nonlinear 
ordinary differential equations: 

𝑆𝐻
/
= Λ𝐻 − (𝜇𝐻 + 𝜙)𝑆𝐻 − 𝜆𝐻𝑆𝐻 + 𝜔𝐴𝐻                                                                                             

(9) 

𝐸𝐻
/
= 𝜆𝐻𝑆𝐻 − (𝜇𝐻 + 𝜉 )𝐸𝐻                                                                                                                   

(10) 

𝐶𝐻
/
= 𝜉𝐸𝐻 − (𝜇𝐻 + 𝜓)𝐶𝐻                                                                                                                        

(11) 

𝐼𝐻
/
= 𝜓𝐶𝐻 − (𝜇𝐻 + 𝛾 + 𝛿)𝐼𝐻                                                                                                                 

(12)         

𝑅𝐻
/
= 𝛾𝐼𝐻 − 𝜇𝐻𝑅𝐻                                                                                                                                 

(13) 

𝐷/ = 𝛿𝐼𝐻 − 𝜅𝐷𝐻                                                                                                                                   
(14) 
𝐴𝐻
′ = 𝜙𝑆𝐻 − (𝜇𝐻 + 𝜔)𝐴𝐻                                                                                                                      

(15) 

𝑆𝑅
/
= Λ𝑅 − 𝜆𝑅𝑆𝑅 − 𝜇𝑅𝑆𝑅                                                                                                                       

(16) 

𝐸𝑅
/
= 𝜆𝑅𝑆𝑅 − (𝜇𝑅 + 𝛼)𝐸𝑅                                                                                                                      

(17) 

𝐼𝑅
/
= 𝛼𝐸𝑅 − 𝜇𝑅𝐼𝑅                                                                                                                                   

(18) 
                                                  
Table 3:  Parameters for the Lassa fever model. 

𝝍 𝑷𝒓𝒐𝒑𝒐𝒓𝒕𝒊𝒐𝒏 𝒐𝒇 𝒄𝒐𝒏𝒕𝒂𝒄𝒕 𝒕𝒓𝒂𝒄𝒆𝒅 𝒊𝒏𝒇𝒆𝒄𝒕𝒆𝒅 𝒊𝒏𝒅𝒊𝒗𝒊𝒅𝒖𝒂𝒍 
𝝓 Awareness rate 

𝝃 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑡𝑟𝑎𝑐𝑒𝑑 𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 

𝝁𝑯 Natural death of the human host 

𝝁𝑹 Natural death of the rodent host 

𝚲𝑯 𝐻𝑢𝑚𝑎𝑛  𝑟𝑒𝑐𝑟𝑢𝑖𝑡𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒 

𝚲𝑹 𝑉𝑒𝑐𝑡𝑜𝑟  𝑟𝑒𝑐𝑟𝑢𝑖𝑡𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒 

𝝎 Rate of revert to the susceptible class when level of awareness 
wanes 

𝜹 The Lassa-induced death rate 

𝜷𝟎 Rate of transmission by infected humans to susceptible humans
. 

𝜷𝟏 Rate of transmission by infected rodents to susceptible humans. 
𝜷𝟐  Rate of transmission by infected corpse to susceptible  human 

𝜷𝟑 Rate of transmission by infected human to susceptiible rodents. 
𝜷𝟒 Rate of transmission by infected corpse to susceptible rodents 
𝜷𝟓 Rate of transmission from infected rodents to susceptible  

rodents. 

𝜸 recovery rate of human from  lassa fever. 
𝜿 the rate of safe burial or disinfection. 

 
Each p a r a m e t e r  represents a biologically meaningful 
transition, with 𝜉 denoting the c o n t a c t  tracing rate of exposed 

individuals, Ψ the rate of progression from traced to infectious, 𝛾 the 

recovery rate, 𝛿 the Lassa-induced death rate, and 𝜅 the rate of 
corpse removal through safe burial or disinfection. 
 
Model Properties and Invariant Region 
For biologically meaningful solutions, all state variables must remain 
non-negative for t > 0. Letting 𝑁𝐻(𝑡) and 𝑁𝑅(𝑡) denote total 
populations,  we obtain:  

 

Thus, 

 

Hence, the region 

 

is positively invariant and attracting. All model trajectories 
initiated in Ω remain bounded and biologically feasible for all t > 
0. 

https://dx.doi.org/10.4314/swj.v20i4.53
http://www.scienceworldjournal.org/
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Disease- Free Equilibrium ( DFE)  
At equilibrium, when there is no infection present i n  
t h e  s y s t e m ,  h e n c e         𝐸𝐻    = 𝐶𝐻   = 𝐼𝐻   
= 𝐷𝐻   = 𝐸𝑅   = 𝐼𝑅   = 0, the remaining equations yield: 
 
 

 

 
 
Thus, the disease-free equilibrium (DFE) is: 
 
 𝐷𝐹𝐸 = (𝑆𝐻

∗ , 0,0,0,0,0, 𝐴𝐻
∗ , 𝑆𝑅′

∗ 0,0) 
 
Computation of the Basic Reproduction Number (R0 ) 

The next-generation matrix (NGM) approach is employed following 
Diekmann et al. (1990) and Van den Driessche and Watmough 
(2002). Let the vector of infected compartments be: 
 

X = (𝐸𝐻 ,  𝐶𝐻 ,  𝐼𝐻 ,  𝐷𝐻 ,  𝐸𝑅 ,  𝐼𝑅 )
T 

,  
 
and express the subsystem as: 

𝑋̇ = ℱ(𝑋) − 𝜈(𝑋), 
where F represents the appearance of new infections and V the 
transition between infected states. 

Detailed derivations of F, V, and V −1  yield the next-

generation matrix K  = FV −1 ,  whose dominant eigenvalue ρ(K) 

gives the basic reproduction number 𝑅0 . 
 
Simplified Two-Host Representation 
For interpretability,  the 𝐸𝐻  →  𝐶𝐻  →  𝐼𝐻chain in humans and 

the 𝐸𝑅  →  𝐼𝑅  chain in rodents can be compressed into effective 
infection probabilities: 
 

   

with mean infectious periods 𝜏𝐻 =
1

(𝛾+𝜇𝐻+𝛿)
and 𝜏𝑅 =

1

𝜇𝑅
. This 

leads to a two-host next-generation matrix M: 
 

 
 
where each 𝑚𝑖,𝑗  quantifies the expected number of secondary 

infectious hosts of type j produced by one infectious host of type 
i. The basic reproduction number is: 

𝑅0 = 𝜌(ℳ) =
𝑡𝑟(ℳ)+√𝑡𝑟(ℳ)2−4det (ℳ)

2
                                             

(19) 
 

Here, awareness reduces R0  indirectly through 𝑆𝐻
∗ , while 

enhanced burial rates (𝜅) and tracing (𝜉) directly reduce 
secondary transmission. 

 
Local Stability of the DFE 
 
By the standard threshold theorem of Van den Driessche and 
Watmough (2002), the DFE is locally asymptotically stable 
whenever 𝑅0 < 1 and unstable if 𝑅0 > 1.  This implies that 
disease elimination is feasible when the combined effects of awareness, 
tracing, and ecological control reduce the effective reproduction 
number below unity (Akinyemi et al., 2018). 
 
Comparison with the Baseline SCIQRD–SI Model 
 

Setting ϕ = 0 (no awareness), 𝛽2= 𝛽4 0  (no corpse infectivity), 

and 𝛽3  = 0  (no human-to-rodent transmission) reduces the 
present model to the SCIQRD–SI structure studied by Agusto 
(2013). Our extended model introduces three critical refinements: 

1. inclusion of awareness (ϕ > 0) that modifies human 

susceptibility, 
 

2. bidirectional human–rodent interactions (𝛽3, 𝛽4), 
 

3. corpse-mediated infection pathways contributing to 
persistent low-level transmission. 

 
These modifications substantially alter the structure of 𝑅0, the 
control thresholds, and the system’s sensitivity to public health 
interventions. 
 
Interpretation of 𝑅0  and Control Thresholds 

The basic reproduction number, 𝑅0 , represents the expected 
number of new infections generated by one infectious individual in 
a completely susceptible population.  It serves as a threshold 
parameter that determines whether the infection will persist 
(𝑅0 < 1) or die out (𝑅0 > 1).  In the context of the SECIRDA–

SEI model, 𝑅0  integrates biological, ecological, and behavioural 
processes governing Lassa fever transmission. 
 
Parameter Contributions and Biological Meaning 
From the closed-form expression (19), it is evident that 𝑅0  depends 

explicitly on transmission rates (𝛽𝑖)progression rates (ψ,α), removal 

rates (γ,δ,κ), tracing and awareness rates (ξ,ϕ), and rodent 

demographic parameters (ΛR ,µR ). Their qualitative effects on 

disease persistence are summarised below: 
•  Human-to-Human Transmission (𝛽0 ) :  Direct person-

to-person contact drives epidemic amplification, especially 
in healthcare or household settings.  Control measures such 
as isolation, barrier nursing, and personal protective 
equipment  (PPE) act to reduce 𝛽0. 

•  Rodent-to-Human Transmission (𝛽1 ) :  This parameter 
quantifies zoonotic spillover from infected rodents to 
humans through food contamination or environmental 
exposure.   Its control requires habitat sanitation, rodent-
proof food storage, and vector reduction programmes. 

 
•   Corpse-to-Human Transmission (𝛽2 ) :  Improper 

handling or unsafe burial of deceased individuals 
contributes significantly to sustained transmission.  
Increasing the safe burial rate κ effectively reduces this 
pathway. 

 

https://dx.doi.org/10.4314/swj.v20i4.53
http://www.scienceworldjournal.org/
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• Awareness Rate (ϕ): Awareness campaigns reduce the 

pool of susceptible individuals by promoting behavioural 

change and risk avoidance.   Mathematically, ϕ  decreases 

  
𝑆𝐻
∗  at the  DFE, thereby lowering  𝑅0 . Sustained awareness 

efforts are therefore a behavioural analogue of vaccination. 
• Tracing Rate (ξ): Contact tracing accelerates the 

movement of exposed individuals into monitoring or 
isolation compartments (𝐸𝐻  → 𝐶𝐻 ), reducing the 
probability that they become infectious. An increase in ξ 
decreases 𝑅0  both by shortening the infectious period and 
by reducing secondary transmission chains. 

 
•  Recovery Rate  (γ)  and Disease-Induced Death  (δ) :  

Both rates reduce 𝑅0   by shortening the mean infectious 

period 𝜏𝐻 .  However, improving γ through early diagnosis 
and treatment yields more sustainable control than relying 
on δ, which reflects uncontrolled mortality. 

 
• Rodent Recruitment (𝚲𝑹 ) and Mortality (𝛍𝑹 ): A 

higher rodent birthrate or environmental proliferation 
increases 𝑅0 , while enhanced rodent mortality (e.g., 
through ecological control or poisoning) has the opposite 

effect.  The ratio 
𝚲𝑹

𝛍𝑹 
  determines the steady-state rodent 

population 𝑆𝑅
∗ , which strongly influences the zoonotic 

component o f  transmission. 
 

•  Safe Burial Rate (κ):  Increasing κ reduces the average 
duration during which deceased individuals remain 
infectious, thereby curtailing both human and rodent 
exposure to corpses. 

Composite Interpretation  
The structure of ℳ in (19) reveals that 𝑅0  comprises additive 
and multiplicative effects of cross-species and within-species 
transmission cycles.  When rodent-to-human  spillover dominates, the 
term 𝑚𝑅𝐻𝑚𝐻𝑅  becomes the primary determinant of epidemic 
persistence. Conversely, in settings with strong human-to-human 
amplification (e.g., hospital clusters),  𝑚𝐻𝐻  dominates the 
spectral radius. 
 
Importantly, 𝑅0  exhibits nonlinear sensitivity to the awareness 

(ϕ) and tracing (ξ) parameters.  A moderate increase in either can 

lead to a sharp decline in 𝑅0 , as shown in the sensitivity plots 
(Figures 1–6). This threshold behaviour implies that awareness and 
tracing campaigns need not achieve perfect coverage to yield 
substantial epidemiological benefits. 
 
Control Threshold and Policy Implications 

The analytical threshold 𝑅0 = 1 separates epidemic growth from 
elimination. Thus: 
If 𝑅0  < 1,  the disease dies out.  If 𝑅0  > 1,  the disease persists 

endemically. From a control perspective, reducing 𝑅0  below unity 
can be achieved through: 
1. Behavioural intervention:  Enhancing awareness campaigns 

to reduce ϕ−1 and increase risk aversion. 

2.  Operational response:  Strengthening contact tracing 
efficiency  (ξ) and rapid case isolation. 
3. Ecological control: Reducing rodent abundance (𝚲𝑹) and 

increasing mortality (𝛍𝑹 ). 
4.  Clinical management:  Improving treatment capacity (γ) 
and safe burial practices (κ). 

These findings highlight that the path to 𝑅0  < 1 requires 
integrated strategies combining ecological control, behavioural 
adaptation, and institutional response. Awareness alone can flatten 
infection curves, but its synergy with effective contact tracing and 
ecological management ensures sustainable control in endemic 
regions.  Consequently, 𝑅0  serves not only as a mathematical 
threshold but also as a comprehensive metric for evaluating public 
health preparedness and resilience. 
 
RESULTS AND DISCUSSION 
This section presents analytical and conceptual numerical results from 
the modified SECIRDA– SEI model.  The analytical derivations 
establish the equilibrium states and stability conditions, while 
the numerical illustrations demonstrate how awareness and 
contact tracing influence the basic reproduction number (𝑅0 ), 
epidemic trajectories, and control outcomes for Lassa fever. 
 
Analytical Results 
The model yields a disease-free equilibrium (DFE) where all 
infected compartments vanish. Applying the next-generation 
matrix (NGM)  approach  (Diekmann  et  al.,  1990; van  den 
Driessche and Watmough, 2002), the basic reproduction number, 
𝑅0 , is obtained as: 
 
𝑅0 =  𝑅𝐻𝐻 +  𝑅𝐻𝑅 +  𝑅𝑅𝐻 +  𝑅𝑅𝑅 ,  
 
 
where each component represents the expected number of 
secondary infections transmitted through specific host pathways: 

 
Here,  𝑆𝐻

∗
   and 𝑆𝑅

∗
   denote the equilibrium susceptible 

populations of humans and rodents ,respectively, while 𝛽0  , 𝛽1  , 

𝛽3  , and 𝛽5   correspond to the transmission coefficients across 
the four primary infection pathways.  The parameters ai   and 

bi   are composite transition rates summarising infection 

progression, recovery, and mortality processes within the host 
populations. 
At the DFE,  the condition 𝑅0 <  1  guarantees local asymptotic 
stability,  implying that each infected individual produces fewer than 
one secondary infection on average.  Conversely, when     𝑅0  >  
1,  the  infection  can  invade and persist within the population,  
signifying an 

 
endemic equilibrium. 
 
Conceptual Numerical Illustration 

To examine the qualitative influence of awareness and contact 
tracing, a set of hypothetical parameter values was adopted based 
on published Lassa fever transmission studies (Agusto, 2013; Ajala 
et al., 2024). The baseline parameters were defined as: 

https://dx.doi.org/10.4314/swj.v20i4.53
http://www.scienceworldjournal.org/
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𝛽0    = 0.45,  𝛽1    = 0.25,  𝛽3  = 0.35,  𝛽5    = 0.15,    μ𝐻= 0.01,  

μ𝑅  = 0.03,  γ = 0.12,  δ = 0.04, 

with awareness and contact-tracing rates initially set to ϕ = 0.02 

and ξ = 0.03.  Under these baseline conditions, 𝑅0  ≈ 1.86, 
indicating potential disease persistence. 

When the awareness rate ϕ increases to 0.06—simulating 

intensified risk communication and behavioural adaptation— the 
susceptible proportion 𝑆𝐻

∗
   decreases substantially, reducing 𝑅0  

to approximately 1.12 (a 40% decline).  Similarly, increasing the 
contact-tracing rate ξ from 0.03 to 0.08 reduces the latent infectious 
period and drives 𝑅0   below unity (𝑅0    ≈ 0.93), representing 
effective epidemic suppression.  Thus, synergistic implementation of 
awareness and contact tracing can theoretically halt Lassa fever 
transmission in endemic zones. 
 
Numerical Experiments, Sensitivity, and Policy 
Implications 
A series of conceptual numerical experiments was conducted to 
further explore the epidemiological behaviour of the modified 
SECIRDA–SEI model.  These experiments were not empirical fits 
but qualitative simulations to illustrate disease dynamics 
consistent with biological realism (Adewale et al., 2016; Musa et 
al., 2020; Ajala et al., 2024). 
 

 

 
Figure 1:  Comparative sensitivity of the basic reproduction 
number (𝑅0) to awareness (ϕ) and contact tracing (ξ) rates. Both 

parameters exhibit a nonlinear decline in 𝑅0   , with contact tracing 
showing a steeper suppressive effect.  The red dashed line 
represents the epidemic threshold  
(𝑅0 = 1). 
 

 

 

Figure 2:  Sensitivity of the basic reproduction number (𝑅0) to 

key epidemiological parameters:  human-to-human  (𝛽0),  rodent-

to-human  (𝛽1),  corpse-to-human  (𝛽2),  recovery  (γ), disease-

induced death (δ), rodent recruitment (Λ𝑅  ), and rodent death (μ𝑅).  

The red dashed line denotes the epidemic threshold 𝑅0 = 1.  
Increasing Λ𝑅  drives 𝑅0    upward, while higher γ , δ, and μ𝑅  
reduce transmission potential. 
 
Temporal Infection Dynamics.    Figure 3  shows the time 
evolution of infectious humans (𝐼𝐻) under three intervention 
scenarios:  (i) no intervention,  (ii) awareness only, and  (iii) 
combined awareness and contact tracing. Without control 
measures, the infection trajectory exhibits exponential growth, 
whereas public awareness campaigns (blue curve) substantially 
flatten the epidemic curve.  The combined strategy (red curve) 
yields the lowest infection peak, demonstrating how behavioural 
and operational responses synergistically mitigate outbreak 
intensity and duration. 
 

 

Figure 3:  Temporal evolution of infectious humans (𝐼𝐻) under 
different intervention sce- narios. Awareness and combined 
strategies significantly reduce infection peaks and shorten epidemic 
duration. 
 
Phase Portrait Analysis.  The (𝑆𝐻,  𝐼𝐻)  phase plane trajectory 
in Figure 4  demonstrates convergence toward the DFE, 
validating the analytical stability condition (𝑅0  < 1).  The 

monotonic decline in 𝐼𝐻 with diminishing 𝑆𝐻 confirms that the 
susceptible population progressively depletes as the infection 
subsides. 
 

 

 
Figure 4: Phase portrait of the susceptible–infectious subsystem 
showing convergence toward the disease-free equilibrium, 
confirming local stability of the model. 
 

https://dx.doi.org/10.4314/swj.v20i4.53
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Combined Sensitivity of 𝑅0  to Awareness and Contact 
Tracing.    Figure 5 presents a  heatmap  of the  combined  effects  
of ϕ  and  ξ  on  𝑅0   . Red regions  correspond  to  high transmission 

potential, while blue regions signify successful control (𝑅0 < 1).  
The inverse nonlinear gradient across the contour map 
illustrates how modest improvements in both awareness and 
contact tracing can jointly push 𝑅0  below the epidemic threshold. 
 
 

 

Figure 5: Heatmap showing the joint effect of awareness 
(φ) and contact tracing (ξ) on the basic reproduction number 
(𝑅0  ).  Red regions correspond to high 𝑅0 values, while blue 

areas indicate effective epidemic suppression (𝑅0  < 1) 
insights into actionable conclusions and policy directions. 
 
Global Sensitivity (PRCC Analysis).   Figure 6 presents 
Partial Rank Correlation Co- efficients (PRCCs) of 𝑅0 with 
respect to model parameters.  Positive coefficients indicate 
amplifying effects on transmission, while negative coefficients 
denote suppressive impacts. The most influential positive 
parameters were 𝛽0 , Λ𝑅  , and 𝛽1 , underscoring the importance 
of human-to-human transmission and rodent demography.  
Conversely, γ , δ, and μ𝑅 exhibited strong negative correlations, 
highlighting the epidemiological value of improved recovery rates, 
early case management, and ecological rodent control. 
 

 

 

Figure 6: Global sensitivity analysis showing Partial Rank 
Correlation Coefficients (PRCCs) of 𝑅0  with respect to model 

parameters.  Positive bars indicate parameters that increase 𝑅0   
when increased; negative bars indicate parameters that suppress 
transmission. 

The sensitivity indices and partial correlation coefficients 
demonstrated that rodent recruitment (Λ𝑅    ) and human–human 

transmission (𝛽0) are dominant amplifiers of 𝑅0 , whereas 

recovery rate (γ) and natural rodent mortality (𝜇𝑅) act as 
suppressive parameters. 
 
Bifurcation Behaviour.    The conceptual bifurcation diagram 
in Figure 7  reveals a non-  linear dependence of 𝑅0 on the human-

to-human transmission rate (𝛽0).  As 𝛽0  increases, 𝑅0 surpasses 
the epidemic threshold, signalling a transition from 
containment to endemic persistence. This behaviour 
emphasises the criticality of reducing direct contact and 
improving healthcare hygiene protocols in controlling 
outbreaks.  
 

 

 
Figure 7:  Conceptual bifurcation diagram showing how R0   
changes nonlinearly with the human-to-human transmission rate 
(𝛽0  ).  The red dashed line indicates the critical threshold 𝑅0    = 
1. 
 
Policy Implications.   The collective results across Figures 3–
7 confirm that behavioural, clinical, and ecological interventions 
interact synergistically in suppressing epidemic potential. 
Awareness campaigns indirectly reduce transmission by promoting 
protective behaviour, while contact tracing provides direct 
suppression through isolation of latent and infectious individuals. 
Furthermore, rodent population control—through habitat 
sanitation, trapping, or predator reintroduction—acts as a long-
term stabilising mechanism that prevents re- emergence. These 
findings reinforce the policy need for a multi-sectoral. One Health 
approach that integrates human,  environmental,  and veterinary  
surveillance to sustainably reduce Lassa fever burden in endemic 
West African settings. 
The analytical derivations and numerical experiments jointly 
provide a coherent picture of Lassa fever dynamics under the 
influence of behavioural and operational interventions. The 
equilibrium and sensitivity analyses confirmed the mathematical 
consistency of the modified SECIRDA–SEI framework,  while the 
numerical simulations illustrated its biological realism and policy 
relevance.  Together, these results bridge theoretical epidemiology 
and applied public health planning. 
Specifically, the reduction of the basic reproduction number (𝑅0  ) 
under incremental in- creases in awareness (φ) and contact tracing 
(ξ) underscores the complementary nature of behavioural change 
and surveillance efficiency.   The phase portrait and bifurcation 

https://dx.doi.org/10.4314/swj.v20i4.53
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plots confirm that improved awareness and tracing rates can shift 
the system from an endemic equilibrium toward a disease-free 
state. Likewise, the PRCC analysis quantitatively ranked 
parameter influence, highlighting that interventions targeting 
transmission pathways and rodent demography yield the highest 
impact on outbreak containment. 
These integrated findings inform practical disease management 
strategies and set the stage for real-world calibration using 
empirical data.   The next section synthesises these insights into 
actionable conclusions and policy directions. 
 
Conclusion 
This study developed and analysed a modified SECIRDA–SEI 
compartmental model for 
Lassa fever transmission that explicitly incorporates two pivotal 
intervention mechanisms—public awareness and contact tracing 
within a two-host (human–rodent) epidemiological system. 
By extending the classical SEIR structure, the model accounts 
for behavioural adaptation, ecological transmission, and the 
dynamics of post-mortem infectivity, thereby offering a more realistic 
representation of the disease ecology. 
Analytical results derived from the next-generation matrix (NGM) 
framework established the disease-free equilibrium and provided a 
closed-form expression for the basic reproduction number, 𝑅0 . 
Both theoretical and numerical analyses confirmed that awareness 
and contact tracing inversely affect 𝑅0, while corpse-mediated and 
rodent–human transmission channels exert positive feedback on 
disease persistence. The sensitivity indices and partial correlation 
coefficients demonstrated that rodent recruitment (Λ𝑅) and human–

human transmission 𝛽0are dominant amplifiers of 𝑅0, whereas 

recovery rate (𝛾) and natural rodent mortality (μ𝑅) act as suppressive 
parameters. 

Conceptual simulations further revealed that doubling the 
awareness rate could reduce 𝑅0    by nearly 40%, while enhanced 

contact tracing could drive 𝑅0 below unity, indicating epidemic 
control. The phase portraits and bifurcation diagrams supported 
the analytical stability conditions, confirming that improved 
awareness and tracing shift the system toward the disease-free 
equilibrium.   Importantly, these findings validate the dual role of 
social behaviour and operational capacity in epidemic 
mitigation, especially in resource-limited settings where 
pharmaceutical interventions remain scarce. 
From a policy standpoint, the results highlight that behavioural 
education, early case detection, and rodent population control 
should be pursued concurrently for sustainable disease elimination. 
Awareness campaigns indirectly lower transmission through 
behaviour modification, while contact tracing directly isolates 
latent and infectious individuals.  Ecological interventions 
targeting rodent demography provide an additional buffer that 
reduces reinfection risk. This triad of behavioural, operational, 
and ecological strategies aligns with the One Health approach, 
reinforcing intersectoral collaboration between human and 
veterinary public health agencies. 

Future research will focus on parameter estimation using 
Nigeria Centre for Disease Control (NCDC) surveillance data, 
uncertainty quantification, and optimal control formulations to 
identify cost-effective combinations of interventions.  Empirical 
calibration will also enable the integration of seasonality, 
environmental variability, and spatial heterogeneity into the 

model.  Such extensions will enhance predictive accuracy and 
facilitate real-time outbreak response planning. 
In summary, the modified SECIRDA–SEI model provides a robust 
theoretical and computation   
framework for understanding and mitigating Lassa fever 
transmission.  By quantifying the interplay between human 
behaviour, contact tracing efficiency, and ecological factors, this 
work contributes not only to mathematical epidemiology but also 
to the formulation of evidence-based public health strategies for 
endemic West African regions. 
 
Appendix A. Full Jacobian at the 
Disease-Free Equilibrium  
Let the full state vector be 
 

𝑍 = (𝑆𝐻, 𝐸𝐻, 𝐶𝐻, 𝐼𝐻, 𝑅𝐻, 𝐷𝐻, 𝐴𝐻, 𝑆𝑅, 𝐸𝑅, 𝐼𝑅)
𝑇

.  

Recall the forces of infection: 
 
𝜆𝐻 =  𝛽0𝐼𝐻 +  𝛽1𝐼𝑅 + 𝛽2𝐷𝐻 ,  𝜆𝑅 =  𝛽3𝐼𝐻 +  𝛽5𝐼𝑅 + 𝛽4𝐷𝐻,  
and define: 
 

𝑎1  = ξ + 𝜇𝐻 ,    𝑎2  = ψ + 𝜇𝐻 ,    𝑎3  = γ + 𝜇𝐻  + 

δ,    𝑏1  = α + 𝜇𝑅 ,    𝑏2  = 𝜇𝑅 . 
 
At the disease-free equilibrium (DFE) we have 

 

 
The Jacobian J = [∂fi /∂zj ] of the full 10-dimensional 

system evaluated at the DFE, in the variable order above, 
is: 

 
𝐽(𝐸0)

=

(

 
 
 
 
 
 
 
 

−(𝜇𝐻 +𝜙) 0 0 −𝛽0𝑆𝐻
∗ 0 −𝛽2𝑆𝐻

∗ 𝜔 0 0 −𝛽1𝑆𝐻
∗

0 −𝑎1 0 𝛽0𝑆𝐻
∗ 0 𝛽2𝑆𝐻

∗ 0 0 0 𝛽1𝑆𝐻
∗

0 𝜉 −𝑎2 0 0 0 0 0 0 0
0 0 𝜓 −𝑎3 0 0 0 0 0 0
0 0 0 𝛾 −𝜇𝐻 0 0 0 0 0
0 0 0 𝛿 0 −𝜅 0 0 0 0
𝜙 0 0 0 0 0 −(𝜇𝐻 + 𝜔) 0 0 0
0 0 0 −𝛽3𝑆𝑅

∗ 0 −𝛽4𝑆𝑅
∗ 0 −𝜇𝑅 0 −𝛽5𝑆𝑅

∗

0 0 0 𝛽3𝑆𝑅
∗ 0 𝛽4𝑆𝑅

∗ 0 0 −𝑏1 𝛽5𝑆𝑅
∗

0 0 0 0 0 0 0 0 𝛼 −𝑏2 )

 
 
 
 
 
 
 
 

 

 
Notes. 
 

•  Row 1  corresponds to d𝑆𝐻 / dt =  Λ𝐻  -𝜆𝐻𝑆𝐻 - (𝜇𝐻 
+ϕ )  𝑆𝐻 + ω𝐴𝐻  ;  at the DFE,  𝜆𝐻  =  0 .  

•  Row 8 corresponds to d𝑆𝑅 /dt =  Λ𝑅-𝜆𝑅𝑆𝑅 -  𝜇𝑅𝑆𝑅;  

at the DFE,  𝜆𝑅 =  0 ,  so ∂/∂SR  =  - µ R .  

•  The block structure is evident if we partition J as J =

, where                                𝐽𝐻𝐻 ∈ 𝑅
7×7   

(human-only),  𝐽𝑅𝑅   ∈  R3×3   (rodent-only),  and  the off-

diagonal blocks capture cross-species transmission. 
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