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ABSTRACT

Pervasive contamination of soil by petroleum hydrocarbons poses
a serious threat to ecosystems and human health. Traditional
physicochemical remediation methods are often costly and
disruptive, prompting growing interest in bioremediation the use of
microorganisms to degrade environmental pollutants, as a more
sustainable alternative. This review explored the potential of
bacteria and fungi derived from organic manure compost for the
bioremediation of hydrocarbon-contaminated soils. To achieve
this, a systematic literature review was conducted using databases
such as Scopus, Web of Science, Google Scholar, and
ScienceDirect, focusing on studies published within the last two
decades. Search terms combined “bioremediation,” “hydrocarbon,”
“compost,” and relevant microbial taxa. Selected articles were
thematically analyzed across contamination scope, compost
microbiology, degradation mechanisms, application strategies, and
influencing factors. Organic manure compost is a rich source of
diverse, pre-adapted, and metabolically versatile microbial
consortia, including hydrocarbon-degrading bacteria such as
Pseudomonas, Bacillus, and Rhodococcus, and ligninolytic fungi
such as Phanerochaete and Pleurotus. Mechanisms of
hydrocarbon degradation both aerobic and anaerobic are
discussed, with emphasis on key enzyme systems such as
oxygenases, laccases, and biosurfactant production that enhance
hydrocarbon bioavailability. Compost serves not only as a microbial
inoculum but also as a bulking agent, nutrient source, and habitat
modulator. Despite current challenges in large-scale deployment,
compost-based bioremediation emerges as a promising, low-cost,
and ecologically sound strategy for restoring hydrocarbon-polluted
soils.

Keywords: Bioremediation; Microorganisms; Hydrocarbon
Contaminated Soils; Bacteria; Fungi; Microbial Consortia; Organic
Manure Compost

INTRODUCTION

Environmental pollution caused by hydrocarbons, heavy metals,
and solid waste remains one of the most critical global challenges,
posing significant threats to ecosystems and public health (Ali et
al., 2021; Lawal & Shehu, 2024; Alao et al., 2025). Hydrocarbons
originating from industrial discharges and oil spills infiltrate soil and
water  systems, disrupting aquatic  ecosystems  and
bioaccumulating within food chains (Abarshi et al., 2017; Dubey et
al., 2024). Heavy metals such as lead, cadmium, and mercury
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present acute hazards even at trace concentrations, as they are
linked to neurological, renal, and developmental disorders in
humans (Balali-Mood et al., 2021; Aliyu et al., 2023; Gusau et al.,
2024; Namakka et al., 2024; Fardami et al., 2025). Similarly,
improper solid waste disposal exacerbates environmental
degradation by contaminating land and water resources, increasing
greenhouse gas emissions, and promoting the spread of disease
vectors (Shehu et al., 2020; Siddiqua et al., 2022; Yunusa et al.,
2025). Collectively, these pollutants degrade environmental quality
and heighten disease burdens in affected communities.

Among these contaminants, petroleum hydrocarbons are of
particular concern due to their widespread use and persistence in
the environment. Global dependence on petroleum as a primary
energy source has resulted in extensive pollution from extraction,
refining, transportation, and storage activities (Varjani, 2017;
Allison & Mandler, 2018; Selvin et al., 2024). Accidental spills and
improper disposal of petroleum products lead to the accumulation
of toxic compounds in soils, posing severe ecological and health
risks because of their cytotoxic, mutagenic, and carcinogenic
properties (Abarshi et al., 2017; Dubey et al., 2024). Total
petroleum hydrocarbons (TPH) a complex mixture of alkanes,
cycloalkanes, and polycyclic aromatic hydrocarbons (PAHs)are
particularly persistent, resulting in long-term soil infertility,
groundwater contamination, and bioaccumulation across trophic
levels (Kuppusamy et al., 2020; Dubey et al., 2024).

Conventional remediation methods such as soil incineration,
landfilling, and chemical oxidation are often costly, energy-
intensive, and environmentally disruptive (Trellu et al., 2016). As a
result, there has been a growing shift toward in situ bioremediation,
which harnesses the metabolic capabilities of microorganisms to
transform or mineralize pollutants into less harmful end products
such as CO, and H,O (Singh et al., 2024; Boro et al., 2025).
Among the various bioremediation approaches, the use of organic
amendments  particularly manure compost has gained
considerable attention. Compost serves not only as a nutrient
source for biostimulation but also as a complex ecosystem rich in
diverse microorganisms, including bacteria and fungi with notable
catabolic versatility (Semple et al., 2001; Sani & Yong, 2021;
Visconti et al., 2023). The composting process naturally enriches
microbial populations capable of degrading complex organic
polymers such as lignin and cellulose metabolic abilities that
frequently extend to hydrocarbon degradation (Singh et al., 2022;
Dubey et al., 2024). Thus, applying organic manure compost to
contaminated soils provides dual benefits: bioaugmentation,
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through the introduction of potent hydrocarbon-degrading
microbes, and Dbiostimulation, by enhancing the soil's
physicochemical properties (Omenna et al., 2024).

This review synthesizes current knowledge on the use of bacteria
and fungi derived from organic manure compost for the
bioremediation of petroleum hydrocarbons. It highlights the
synergistic role of the compost matrix, key biochemical pathways
involved, and the operational factors that influence bioremediation
efficiency.

MATERIALS AND METHODS

This review was conducted through a systematic analysis of
literature related to the bioremediation of hydrocarbon-
contaminated soils using microorganisms derived from organic
manure compost. Databases searched included Scopus, Web of
Science, Google Scholar, and ScienceDirect. Search terms
included combinations of (“bioremediation” OR “bioaugmentation”
OR “biostimulation”) AND (*hydrocarbon” OR “petroleum” OR
“PAH") AND (“compost” OR “organic manure”) AND (“bacteria” OR
“fungi” OR “microbial consortium”).

Studies published primarily within the past two decades were
prioritized, with seminal older works retained for context. Selected
full text articles were categorized thematically into contamination
scope, compost microbiology, degradation mechanisms,
application strategies, and influencing factors.

RESULTS AND DISCUSSION

The Scope of Hydrocarbon Contamination and Key
Challenges

Petroleum hydrocarbons constitute a complex and heterogeneous
group of contaminants whose environmental persistence and
toxicity are governed by their molecular weight and structural
complexity. Light aliphatic fractions, such as n-alkanes (C1¢-C>o),
are relatively labile and serve as preferential substrates for many
microbes (Xu et al., 2025). In contrast, high-molecular-weight
PAHs such as pyrene (4-ring) and benzo[a]pyrene (5-ring) are
highly recalcitrant due to their hydrophobic nature, strong sorption
to soil organic matter and clay particles, and low aqueous solubility,
which collectively limit their bioavailability (Megharaj et al., 2011;
Lawal et al., 2017; Kuppusamy et al., 2020).

The key challenges in remediating these contaminated soils are
multifaceted and interconnected. The primary bottleneck is low
bioavailability, whereby hydrophobic compounds are sequestered
in soil micropores or bound to organic matter, rendering them
inaccessible for microbial uptake (Semple et al., 2003).
Furthermore, microbial degradation of hydrocarbons, a carbon-rich
substrate is often constrained by severe deficiencies in essential
nutrients, particularly nitrogen and phosphorus. This imbalance
leads to a stalled biodegradation process (Leewis et al., 2016).
Compounding these issues is the inherent microbial toxicity of
many hydrocarbons, including BTEX compounds and certain
PAHSs, which can inhibit microbial metabolism and reduce the
overall catabolic potential of the soil microbiome (Li et al., 2019).
Hydrocarbon contamination often leads to physical degradation of
soil structure, resulting in the destruction of soil aggregates,
reduction in pore space, and formation of hydrophobic surfaces
that impede water infiltration and gas diffusion, thereby creating
anoxic conditions unfavorable for aerobic degradation (Gomiero,
2016; Hossain et al., 2022; Naorem et al., 2023). These
interconnected challenges underscore the inadequacy of relying

solely on natural attenuation and highlight the necessity for
biostimulation strategies that simultaneously address nutrient
deficits, improve soil physicochemical properties, and enhance
microbial activity. The use of organic manure compost represents
a holistic approach that targets these multiple limitations
concurrently.

Organic Manure Compost as a Microbial Reservoir
Composting is a controlled, aerobic, thermophilic biological
process that stabilizes organic matter, resulting in a humus-rich,
sanitized product. Beyond its value as a soil conditioner, the
resulting compost acts as a “microbial seed bank,” hosting a highly
diverse, metabolically robust, and often pre-adapted consortium of
microorganisms. This community structure is profoundly influenced
by the feedstock composition and process parameters such as
temperature and aeration (Rout et al., 2023; Jacob et al., 2025).
Key bacterial genera commonly identified include hydrocarbon
degraders such as Bacillus, Pseudomonas, Acinetobacter,
Streptomyces, and Rhodococcus (Awasthi et al., 2020). The genus
Paenibacillus has gained prominence as a highly effective
degrader, with genomic studies confirming the presence of
catabolic genes such as alkB, which encodes alkane hydroxylases
critical for n-alkane oxidation (Mhuantong et al., 2019; Feng et al.,
2021). The fungal community is equally critical, comprising
decomposers such as Aspergillus and Penicillium, as well as
specialized ligninolytic white-rot fungi like Phanerochaete
chrysosporium and Trametes versicolor (Kaur et al., 2021; Galazka
et al.,, 2024). These fungi produce extracellular lignocellulolytic
enzymes highly effective in attacking recalcitrant PAHs (Pointing,
2001; Baldrian, 2008). Yeasts such as Pichia spp. and Candida
spp. also exhibit significant hydrocarbon-degrading capabilities
through cytochrome P450 systems and biosurfactant production
(Hashem et al., 2018; Xue et al., 2020; Padilla-Garfias et al., 2024;
Aeini et al., 2025).

Mechanisms and Application of Hydrocarbon Degradation in
Compost-Based Bioremediation

Microbial degradation of hydrocarbons follows specific biochemical
pathways initiated by oxygenase enzymes that incorporate
molecular oxygen into the inert hydrocarbon molecule. Aerobic
bacteria typically initiate alkane degradation via terminal or
subterminal oxidation catalyzed by monooxygenases such as AlkB
or dioxygenases, converting them to alcohols and then to fatty
acids for entry into the B-oxidation pathway (Rojo, 2009).Aromatic
rings are attacked through dihydroxylation catalyzed by
dioxygenases, forming catechols that undergo ring cleavage via
the ortho or meta pathway (Fuchs et al., 2011; Phale et al., 2019).
Fungi employ complementary mechanisms, with white-rot fungi
utilizing extracellular peroxidases—lignin peroxidase, manganese
peroxidase—and laccases to oxidize PAHs co-metabolically
(Baldrian,  2008). Yeasts employ cytochrome P450
monooxygenases for oxidation to trans-dihydrodiols (Padilla-
Garfias et al., 2024). Biosurfactant production by Pseudomonas
and Bacillus enhances substrate availability (Ron and Rosenberg,
2014; Santos et al., 2016).

Compost acts not only as a microbial inoculum but also as a
nutrient source, bulking agent, and microhabitat modifier that
optimizes pH, aeration, and nutrient availability (Margesin et al.,
2007; Sayara et al., 2010). It also enhances soil structure, oxygen
diffusion, and water retention (Lopez et al., 2006). The priming
effect—activation of indigenous microbes through labile compost
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carbon—further

accelerates

co-metabolic  hydrocarbon

degradation (Blagodatskaya and Kuzyakov, 2008; Fonti et al.,

2015).

Application strategies include biostimulation, where compost
addition stimulates native degraders, and bioaugmentation, where

https://dx.doi.org/10.4314/swj.v20i4.61

specific compost-derived strains or consortia are introduced to
degrade recalcitrant pollutants (Azubuike et al., 2016; Tyagi et al.,
2011; Poi et al., 2018). Integrated approaches combining both yield

superior results.

Table 1. Summary of Findings from “Advances in Microbial Bioremediation of Hydrocarbon-Contaminated Soils Using Compost-Derived

Bacteria and Fungi”

Thematic Area

Scope of
Hydrocarbon
Contamination

Challenges in
Remediation

Role of Organic
Manure Compost

Compost-Derived
Bacteria

Compost-Derived
Fungi

Yeasts and
Biosurfactant
Producers
Biochemical
Mechanisms

Application
Strategies

Factors Affecting
Efficiency
Performance
Evidence (Case

Studies)

Emerging Trends

Key Findings

Hydrocarbon pollution causes long-term soil
infertility, toxicity, and ecosystem disruption.
High-molecular-weight PAHs are
particularly recalcitrant.

Main limitations include low bioavailability,
nutrient imbalance, and hydrocarbon
toxicity to microbes. Soil structure
degradation worsens remediation
challenges.

Compost acts as a microbial reservoir,
nutrient source, and bulking agent
enhancing soil aeration and microbial
activity.

Compost harbors metabolically versatile
bacteria capable of degrading alkanes and
aromatics.

Fungi produce extracellular enzymes for
PAH degradation, particularly white-rot
fungi.

Yeasts degrade hydrocarbons via
cytochrome P450 and biosurfactant
synthesis, increasing bioavailability.
Aerobic degradation via oxygenases (AIkB,
mono-/dioxygenases); Fungal oxidation via
laccases and peroxidases; co-metabolism
and biosurfactant action enhance
degradation.

Two main strategies: (1) Biostimulation —
compost enhances native microbial activity;
(2) Bioaugmentation — inoculation with
compost-derived microbes.

Optimal pH (=7), C:N:P ratio (100:10:1),
moisture, temperature, and contaminant
type determine success.

Field and lab studies show high
degradation efficiency with compost
amendment.

Integration of omics, synthetic microbial
consortia (SMCs), and nano-assisted
compost systems for enhanced
degradation.

Representative Microorganisms /
Mechanisms
Persistent hydrocarbons: n-alkanes,
cycloalkanes, PAHs (e.g.,
benzo[a]pyrene).

Deficiency of N, P; hydrophobicity;
toxicity of BTEX and PAHSs; anoxic
soil conditions.

Contains diverse bacteria, fungi, and
yeasts adapted to degrade
hydrocarbons.

Pseudomonas, Bacillus,
Acinetobacter, Streptomyces,
Rhodococcus, Paenibacillus (alkB
gene for alkane hydroxylase).
Phanerochaete chrysosporium,
Trametes versicolor, Aspergillus,
Penicillium. Enzymes: laccases, lignin
peroxidase, manganese peroxidase.
Pichia spp., Candida spp.

Key enzymes: oxygenases, laccases,
cytochrome P450, peroxidases.

Integrated bioaugmentation +
biostimulation yields superior TPH
and PAH removal.

Compost buffers pH, supplies
nutrients, improves aeration and
structure.

90% TPH removal (biopiles), 73.6%
oil degradation (desert soil),
enhanced PAH degradation by white-
rot fungi.

Synthetic consortia, functional gene
tracking, nanomaterial-assisted
biodegradation.

Supporting Studies /
References (as cited)
Megharaj et al, 2011,
Lawal et al, 2017,
Kuggppusamy et al., 2020.

Semple et al., 2003;
Leewis et al., 2016;
Gomiero, 2016; Hossain et
al., 2022.

Rout et al., 2023; Jacob et
al., 2025.

Awasthi et al., 2020; Feng
et al., 2021; Mhuantong et
al., 2019.

Kaur et al., 2021; Baldrian,
2008; Galazka et al., 2024.

Hashem et al., 2018; Xue
et al., 2020; Aeini et al.,
2025.

Rojo, 2009; Phale et al.,
2019; Padilla-Garfias et al.,
2024.

Azubuike et al., 2016;
Tyagi et al., 2011; Poi et
al., 2018.

Sarkar et al., 2016; Xu et
al., 2018.

Onwosi et al., 2017; Ali et
al., 2022; Zeng et al., 2024.

Ding et al., 2016; Karmakar
et al., 2024; De Lorenzo,
2023; Mukhopadhyay et

al., 2022.

Advances In Microbial Bioremediation Of Hydrocarbon-Contaminated Soils Using

Compost-Derived Bacteria And Fungi:

A Comprehensive Review

1774


https://dx.doi.org/10.4314/swj.v20i4.
http://www.scienceworldjournal.org/

Science World Journal Vol. 20(No 4) 2025

https://dx.doi.org/10.4314/swj.v20i4.61

www.scienceworldjournal.org
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)
Published by Faculty of Science, Kaduna State University

Factors Influencing Bioremediation Success, Case Studies,
and Future Perspectives

The success of compost-based bioremediation depends on soil pH
(near-neutral), moisture, and optimal C:N:P ratio (100:10:1) (Sarkar
et al., 2016). Temperature, contaminant type, and concentration
also determine microbial activity and strategy choice (Varjani,
2017). Compost optimizes these parameters by acting as a bulking
agent, buffer, moisture reservoir, and organic amendment (Kastner
and Miltner, 2016; Xu et al., 2018).

Field studies confirm its effectiveness: Onwosi et al. (2017)
reported 90% TPH removal using compost-amended biopiles;
Zeng et al. (2024) demonstrated enhanced PAH degradation via
white-rot fungi in compost. Ali et al. (2022) observed 73.6% oil
degradation in desert soils through native microbial activity,
underscoring compost’s field viability (Tran et al., 2021).

Emerging trends include synthetic microbial consortia (SMCs) for
predictable degradation (Ding et al., 2016; Ben and Or, 2017;
Karmakar et al., 2024), omics-based monitoring (De Lorenzo,
2023), and nano-assisted  bioremediation, integrating
nanomaterials with compost to enhance pollutant breakdown
(Galdames et al., 2020; Mukhopadhyay et al., 2022).

Conclusion

Compost-based bioremediation integrates microbial ecology with
environmental engineering to deliver a sustainable, cost-effective,
and environmentally sound solution for hydrocarbon-contaminated
soils. The synergistic interactions between compost-derived
bacteria and fungi—such as Paenibacillus and Pleurotus—and the
compost matrix enhance degradation efficiency through nutrient
balancing, structural improvement, and co-metabolic activity.
Evidence from laboratory and field studies demonstrates high
pollutant removal efficiencies, validating its scalability and real-
world applicability.

Recommendations

1. Prioritize genomic and metabolic profiing of
underexplored compost isolates to identify novel
degradative pathways.

2. Implement standardized, long-term field trials across
varied climatic and contamination conditions for
performance validation.

3. Employ omics-based tools to monitor microbial
community succession and functional gene expression
in real time.

4,  Establish clear biosafety guidelines and regulatory
frameworks for the use of engineered xor synthetic
microbial consortia.

5. Encourage interdisciplinary collaborations and policy
incentives for the industrial-scale adoption of compost-
based remediation technologies.
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