
_____________________________________________________________SCIENCE WORLD JOURNAL VOL 3 (NO2) 2008 
                                                                                                                                                       www.sciecnceworldjournal.com 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

FULL LENGTH RESEARCH ARTICLE 

Adejo & Choji (2008) SWJ:x-u                             Comparative Analysis of The affine Scaling 

COMPARATIVE ANALYSIS OF THE AFFINE SCALING AND KARMARKAR’S  
POLYNOMIAL – TIME FOR LINEAR PROGRAMMING 

 
*ADEJO, B. O1. & CHOJI, D. N.2 

 
1Department of Mathematical Sciences 
Kogi State University, Anyigba, Nigeria 

2Department of Mathematics, 
University of Jos, Nigeria 
*(Corresponding author) 

adejo62@yahoo.com 

INTRODUCTION 
In 1979 Khachian proposed the ellipsoid method to solve LP problems 
in polynomial-time. He adapted the ellipsoid method used in convex 
optimization developed independently by Shor (1968) and Ludin & 
Nemirovskii (1976) to give a polynomial-time algorithm for LP. The 
complexity bound of his algorithm was ),(0 4 Ln  where n  is the 
number of variables and L  is the input length. The practical 
implementation of the Khachian (1979) algorithm has been inefficient. 
 
In 1984, a polynomial-time linear programming algorithm using an 
interior point method was proposed by Karmarkar (1984). However, 
interior point methods were known as early as the 1960s in the form of 
the barrier function methods, but the media publicity that accompanied 
Karmarkar’s announcement led to these methods receiving a great 
deal of attention. The computational complexity of Karmarkar (1984) 
algorithm in theoretical terms was better than Khachian’s algorithm by 
a factor of ),(0 5.0 Ln since the complexity bound of Karmarkar 

(1984) was ).(0 3.3 Ln  Karmarkar’s algorithm compares favourably 
with the simplex method. In fact, it has been observed in Karmarkar 
(1984), that the United State Air Force independently tested Bell Lab 
Production Code which implements Karmarkar’s projective interior 
point method against the simplex method, using the same machine 
and the same test problems and found that Karmarkar’s method was 
400 times faster than the simplex method on the largest problem they 
could solve by the simplex method, but more significantly, they were 
able to solve even larger problems, which previously were unsolvable 
due to the limitations of the simplex method. 
 
Current efficient implementations of the interior point methods are 
mostly based on a predictor-corrector technique (Mehrotra & Sun 
1987), where the Cholesky decomposition of the normal equation or 

TLDL  factorization of the symmetric indefinite augmented system is 
used to perform Newton’s method (together with some heuristics to 
estimate the penalty parameter). 
 

23 

ABSTRACT 
The simplex method is the well-known, non-polynomial solution technique for linear programming problems. However, some 
computational testing has shown that the Karmarkar’s polynomial projective interior point method may perform better than the 
simplex method on many classes of problems, especially, on problems with large sizes. The affine scaling algorithm is a variant 
of the Karmarkar’s algorithms. In this paper, we compare the affine scaling and the Karmarkar algorithms using the same test 
LP problem. 
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In this paper, we described the affine scaling algorithm and the 
Karmarkar’s algorithm and ended up by comparing the two.  
 
The Affine Rescaling Algorithm 
This method was first introduced by Dikin (1967) and later re-
introduced by Barnes (1996)  and Vanderbei et al. (1986). 
 
The Algorithm: 
It starts directly on the LP problem in standard form: 
 

minimize xcz T                                                
  subject to 6Ax      
       0x  

…(1.0) 

 
The algorithm generates a monotonic decreasing sequence of the 
objective function value. 
 
We derive the algorithm based on Barnes (1996) approach. The dual of 
(1.0) is 

maximize  wbz T  

  subject to cwAT   
   0w                                       … (2.0) 
 
Barnes (1996) made the following assumptions: 

i. That the prima LP (1.0) has no degenerate basic 
feasible solution. 

ii. That no basic solution exists for the dual LP (2.0) 
 
Hence, from the assumption (i), b cannot be expressed as a positive 
combination of fewer than m  columns of A  and from the 
assumption (ii), at most m  of the equations 
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for some constants   and if   ,21  yxD  which implies that 

 )(  TAcD        … (7.0) 
substituting (7.0) in (5.0) implies that  
 

      
R

yxDAcD
AcD

T
T




1
  

Thus,  
 


T

T

AcD
AcRDyx





2

,       … (8.0) 

The condition bAyAx   implies that  
     122 

 TAADcAD       … (9.0) 
 
Now from (5.0), it implies that  
  TTT AcDRycxc      … (10.0) 
Hence, the minimum of (10.0) is given by its right hand side and it is 
obtained when x and   are given by (8.0) and (9.0) respectively. This 
suggests an algorithm for iteratively finding the solution of the primal 
problem (1.0). 
 
The Algorithm according to Barnes (1996) states as follows: 
Let 00 x  that satisfies bAx 0  can be given. In general, if kx  
is known, define 
 ),...,,( 21

k
n

kk
k xxxdiagD   

and compute 01 kx  by the following formulae: 

  
 k

T
k

k
T

kkk

AcD
AcRDxx







2

1  

 where     122 
 T

kkk AADCAD      …(11.0) 
 
Theorem 1 
If the primal LP (1.0) has a bounded solution, then the sequence 
 kx  defined by (11.0) converges to a solution of (1.0), that is an 
extreme point of the constraint set defined by 0,  xbAx  
Proof (see Barnes 1996) 
 
Theorem 2 
Let x  denote the solution of the primal LP (1.0). Sequence  kx
generated by the dual LP (2.0) satisfies 

  











 xcxc

Emn
Rxcxc TkT

k

TkT 11     … (12.0) 

where  k  is a sequence of positive numbers converging to 0  as 
k . Proof (see Barnes 1996) 

 
From the non-degenerating assumptions, we know that 

 




k
xx klim

  

has (n – m) components equal to zero. 
 

miac T
ii .,..,2,1,0    can be satisfied simultaneously. 

 
The LP problems (1.0) and (2.0) remain non-degenerate under small 
perturbations in b  and .c  In fact, if LP (2.0) is non-degenerate, then 
there exist a number 0  such that any feasible solution of (1.0) 
will have at least m  components greater than .1  Also, if the dual 
LP (2.0) is non-degenerate, then there exist a number ,02   such 

that at most m  of the inequalities 2
 T

ii ac  can be 

satisfied simultaneously. 
 

1  and 2  can be found such that the above conditions hold when 
b and c  are perturbed slightly. 
 
Now, let T

nyy ).,..,( 1  be a feasible solution of the primal LP (1.0) 
that satisfies ..,..,2,1,01 njy   If ,10  R  then the 
ellipsoid 

                               

2

1
2

2
1)(

R
y

yxn

j j

j 



                          

lies in the interior of the positive orthant P  in 0E  (Barnes 1996). 

Hence, a feasible solution of LP (1.0) that satisfies ycxc TT   can 
be obtained by solving the following LP problem: 
  minimize xcz T  
  subject to bAx 

         
 

                              

2

2

1
R

y
yxn
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jj 








 



                  …(4.0) 

 
Hence, the constraint 0x in (1.0) can be replaced by (3.0), which 
is easier to handle (Barnes 1996). 
 
Now, to solve (4.0), we let T

n ),...,.( 1    be a vector of 
lagrange multipliers that correspond to the constraint .bAx 

 Let )..,..,( 1 nyydiagD   Since Dy j ,0  is non-singular. 
Now, for any x  that satisfies (4.0), we have 
 

   
   

   

  RacD
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
















1

1

     … (5.0)

 

 
The inequalities in (5.0) are obtained from (2.0) and Schwartz’s 
inequality. Equality holds in (5.0) if 
     yxDAc T  1     … (6.0)

  

 …(3.0) 
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For simplicity, we assume that  

 0,...,,...,, 21
  nxxxx  

 
Hence, from (6.0), 
      xxDAcDxcxc k
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          2
111

k
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   

 where 











 
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n

k
k

i

i
k

i
k x

xx
0

      …(13.0) 

which tends to zero as k . Hence, (2.13) can be written as 

   





 xcxcxc
mn

xcxcR TkTkT

k

TkT
1  

i.e    
k

TkT
TkTTkT

mn
xcxcRxcxcxcxc







1  

which is equivalent to (12.0). From the above theorem 2, Barnes 1996) 
noted that the amount by which the objective function xcT  decreases 
at each iteration of the algorithm increases, if R  is increased. This 
suggests that, at each step of the algorithm, R  should be increased as 
much as possible, with the condition that all the variables remain non-
degenerate. 
 
The affine scaling algorithm has been successfully implemented by 
Adler et al. (1991) and Monma & Morton (1987).  
 
Karmarkar’s Algorithm. 
 Let  0 Axx  
  0,1  xxx i  
 and   
be the affine space, simplex and polytope respectively. 
 
Karmarkar (1984) considered an LP problem in standard forms 
 minimize xcz YT   

subject to bAx   
  0x  

where mxnn zazxc  ,,  and .nzb     … (14.0) 
 
On application of some projective transformation on (1.0), Karmarkar 
(1984) obtained the following canonical form LP: 
  maximize xcz T  
  subject to 0Ax  

   1xeT  
   0x  

where  1,..,1,1Te  
 
The target minimum value of the objective function in this algorithm is 
zero. 

 
The algorithm: 
It operates in such a way that it generates a sequence of points 

..,...,, )1(0 kxxx  in the following steps: 
 Step 1: Initialization: 
     set )0(x  to the centre of the simplex 







 e

n
1  

 Step 2: Computation of the next point: 
 
Let )1(  kxb  and kxa   is defined by the following sequence 
of operation: 
Let  ,,..., ni aadiagD    where the thi  entry is .ia  Let 

,



 Te

ADB  i.e. augment the matrix AD  with a row of all 1’s. This is 

to guarantee that Bker  (i.e: the null space of B) is contained in the 

hyperplane  .0,1  xxx i  
 
Compute the orthogonal projection of DC  into the null space of 

  DcBBBBceiB TT
p

1
1.


  

Normalize 
p

p

c
c

c ˆ  i.e; ĉ  is the unit vector in the direction of .pc  

Let ,ˆ0 craB  i.e; take a step of length r  in the direction of 

,ĉ  where 
)1(

1



nn

r  is the radius of the largest sphere and 

)1,0(  (a parameter which Karmarkar set equal to 
4

1 ). 

Apply the inverse projective transformation to b  i.e. .1

1

Dbe
Dbb T  

 
Return. 
Step 3: Check for feasibility. 

Karmarkar (1984) defined a potential function 
i

T

x
xcxf ln)(   in 

which a certain improvement  in the potential function is expected at 
each iteration. The value of   depends on the choice of the parameter 

,  e.g. if ,4
1  then 

8
1  (Karmarkar 1984). If the expected 

improvement is not obtained i.e. if     ,)()1(  kkk xfxf  then, 
we stop and conclude that the minimum value of the objective function 
of the LP problem (2.1), problem from which we obtained the canonical 
form does not have a finite optimal solution i.e, it is either infeasible or 
unbounded. 
 
Step 4: The termination Rule: 
The algorithm stops, when the required convergence check is obtained. 
 

 i.e. when q
T

T

ac
xc  2
0

 

where q  is a positive real number. Standard form variants of 
Karmarkar’s algorithm have been developed by Asntreicher   (1985); 
Gay (1987); Steiger (1988); Ye & Kojima (1987). 
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Comparison 
Karmarkar’s algorithm is a polynomially bounded interior point method. 
To the best of our knowledge, no general results on the bounds on the 
efficiency of the affine scaling algorithm is available, but due to analysis 
carried out by Megiddo & Shub (1986), about associated continuous 
trajectory, it is suspected that primal-dual affine scaling algorithms are 
exponential in the worst cases. However, Monteiro & Adler (1990) have 
shown that one primal-dual version of the affine scaling algorithm has a 
polynomial-time complexity, provided that it starts near the ‘center’ of 
the feasible set and takes sufficiently small step-size. It is still an open 
question if possible to achieve polynomial bound for this variant of the 
affine scaling algorithm under less restrictive conditions or not. 
 
The affine scaling algorithm has the following advantages over the 
original Karmarkar’s algorithm. It starts on the LP problem in standard 
form and assumes that a point 0x  is known such that 

.0, 00  xbAx It generates a monotonic decreasing sequence of 
the objective function values and the minimum of the objective function 
need not be known in advance. The affine scaling algorithm is one of 
the simplest and most efficient polynomial time algorithms for solving 
LP problems. It is very attractive due to its simplicity and its excellent 
performance in practice. 
 
For both the affine scaling and Karmarkar’s algorithms, like any other 
interior point algorithms, the bulk of the computation work are 
concentrated in the projective operation needed in each of the 
iterations. 
 
It is generally believed that the proof of convergence of affine-scaling 
algorithms in the absence of degeneracy is fairly straight forward, while 
under degeneracy, such a proof is long and cumbersome. Manual 
computations of both algorithms are repetitive, cumbersome and prone 
to errors. 
 
Experimental results have shown that the affine scaling algorithms 
compete favourably with the MINOS code which implements the 
simplex algorithm for linear programming. 
 
Example: 
We solve the following problem manually by the use of both methods: 
 minimize 21 xxz   
 subject to 42 21  xx  

77 21  xx  
0, 21 xx  

For the affine scaling algorithm, we let  9,2,2,20 x  be an 
interior point that satisfies 0, 00  xbAx  and for the Karmarkar’s 
algorithm, we choose 1,3,2,1,2 54321  aaaaa  and 

1ba  as the strictly interior points in the positive orthant, that satisfy 

the LP upon introduction of artificial variables and ,ia  subsequently 

replacing .ix  
 
Conclusion 
The simplex method gave the most accurate result of 40.2z  to the 
LP under consideration. We note that the other methods especially the 
Karmarkar’s algorithm gave solution that were a bit far from that of the 

Karmarkar’s algorithm gave solution that were a bit far from that of the 
simplex method. At the th8  iteration, the affine scaling algorithm gave 
its solution as ,42.2z  while Karmarkar’s result even at the th8  

iteration when optimality was reached, (i.e. when 0xcT ) gave its 
result as .50.2z  
 
There were numerous round-off errors involved when applying the 
algorithms manually, especially for the Karmarkar’s algorithm. 
 
We note that it is needless using the interior point algorithms to solve 
small-size LP problems, since they are even more tedious, time 
consuming and boring as the number of iterations increases. We 
therefore recommend their use only for large LP problems and using 
computer softwares. 
 
Furthermore, the affine scaling method was found to be relatively 
simpler than the Karmarkar’s algorithm and gave the closer result to 
that of the simplex method. 
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