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INTRODUCTION 
In our study of Noetherian rings, we noticed that the rings 
characteristically reproduce themselves under various operations. We 
also noticed that the most important source of these classes of rings is 
the Hilbert’s Basis theorem which states that: ‘If R  is a Noetherian 
ring then the polynomial ring [ ]R x where x  is an indeterminate is 
Noetherian. 
 
Although some authors have discussed the theorem, the proof 
presented by Jacob (1969) is interesting. The commentaries in this 
paper are based on his proof. Here R denotes a commutative ring 
and [ ]R x denotes a polynomial ring. 
 
Preliminaries: The following definitions and prepositions are 
preliminaries in understanding the theorem in focus and the proof of it. 
 
Definition 1: (Oscar & Pierre 1965) 
Let R be a commutative ring and a non-empty sub-set I of R  is said 
to be an ideal of R  if: 
(i): a b  I for ,a b R   
(ii): ra I , for ,a b R . 
 
Definition 2: (Atiyah & Mcdonald 1969) 
A finitely increasing sequence: 0 1... nI I I , of ideals in a 
commutative ring R is called a chain of ideals. 
 
Definition 3: (Atiyah & Mcdonald 1969)  
A ring R in which the ascending chain: 1 2 3...I I I  , of ideals 
of R is stationary is called a Noetherian ring. 
 
Definition 4: (Jacob 1969) 
If I is any ideal in [ ]R x , and  the set { :nI a R a  is the 

coefficient of nx  in some [ ]f x I with deg [ ] }f x n then nI  

is called the thn  associated ideal of I . If p  is a primary ideal then 
its radical ( )r p  is called the associated ideal of p  and we say that 
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p  is a primary ideal belonging to the prime ideal ( )r p  or simply 
that p  is primary for ( )r p . 
 
Proposition 1: (Jacob 1969) 
If I  is an ideal of [ ]R x , then I  is an ideal of R . 
Furthermore, 1n nI I  , for all n .  
 
 Proof: If , na b I , say 0 1( ) ... nf x a a x ax I      and 

0 1( ) ... ng x b b x bx I     , 
then

0 0 1 1( ) ( ) ( ) ( ) ... ( ) nf x g x a b a b x a b x I         , 

so ( ) na b I  .  
 
Also if r R , then 0 1( ) ... n

nrf x ra ra x ra x I     , so 

nra I , from definition (2), nI is an ideal.   
To prove the second part, take the product ( )xf x . 

1
0 1 0 1( ) ( ... ) ...n nxf x a a x ax x a x a x ax I        

, so  

1na I  , hence 1n nI I   as na I .               
 
Proposition 2: (Jacob 1969; Cohn 1977) 
Let C D , be ideals of [ ]R x .Then n nC D for all n . 

Furthermore if n nC D , for all n  then C D . 
 
Proof: We prove the first statement from the definition 4 by Jacob 
(1969). As C  is an ideal in [ ]R x , 

{ :nC c R c  is the coefficient of nx in some ( ) }f x C . D  
is an ideal of [ ]R x   implies that: { :D d R d  is the coefficient 
of nx in some ( ) }f x D .Hence C D , for all n. 
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i. From the horizontal chain; 
0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

...
...
...
...

I I I I
I I I I
I I I I
I I I I

   

   

   

   

   

and so on. 
 
ii. From the vertical chains we have; 

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

...
...
...
...

I I I I
I I I I
I I I I
I I I I

   

   

   

   

 

and so on. 
 
iii. Diagonally, we have: 

    
1,0 2,1 3,2

0,0 1,1 2,2

0,1 1,2 2,3

...

...

...

I I I
I I I
I I I

  

  

  

 

as ascending chains. 
 
Now since 0,0 1,1 2,2 3,3 ...I I I I    , is an ascending chain of 

ideals of R , there, exists an integer, k say such that: , ,i i k kI I for, 

all i k . Now we consider the k vertical chains   

0, 1, 2, ...; 0,1, 2,..., 1j j jI I I j k     . There exists an 

integer jn  such that for all , ,,
jj t j n jt n I I  .  

Let 0 1max{ , ,..., , }j kn n n n k .We claim that if i n , 
 

i nI I . By the second proposition, it suffices to show that  

, ,i j n jI I  for all j . 

If 0 j k  , then ji n n  , implies 

, , ,ji j n j n jI I I  .If j k and i n k  , then: 

, , ,i j k k n jI I I  , since , ,r s k kI I  whenever: ,r s k . This 
completes the proof. 
 
Conclusion 
This argument is applicable to all the ascending chains of ideals 
obtained in i, ii and iii above, hence [ ]R x  is Noetherian whenever 
R is a commutative Northerian ring. We conclude that: 

 
1. The significance of this theorem is that it is very useful in the 

construction of   Noetherian rings (Apine 2006). 
 

2. The theorem also shows that Noetherian rings   
characteristically reproduce themselves. 

To prove the second statement, we suppose that, n nC D , for all 
n , and that  

0 1( ) ... n
nf x d d x d x D      … (1) 

 We wish to show that ( )f x C . We prove that by induction on n . 
If 0n  , then 0 0 0( )f x d D C C    . 
Thus we assume that the statement is true for all polynomials of 
deg 1n  . 
Since ( )f x D , we have that n n nd D C  . Thus there exists 
a polynomial ( )g x such that:  

1
0 1 1( ) ... (2)n n

n ng x c c x c x d x C D
         

 
 From (1)  and (2)  we have: ( ) ( )f x g x D  .  
But deg( ( ) ( )) 1f x g x n   , so by the induction 
hypothesis ( ) ( )f x g x C  . 
Since, ( )g x C we conclude that ( )f x C . This completes the 
induction and hence n nC D , then C D . 
 
We now restate the theorem and give the proof which is our main 
result. 
 
The theorem:  
If R  is a commutative Noetherian ring, then [ ]R x  is Noetherian. 
 
Proof:  
Let I be an ideal of [ ]R x and suppose that 0 1 ...I I   is a 

chain of ideals of [ ]R x . Let ,i jI  denote the thj  associated ideal 

of iI . We then have the following pattern of inclusions. Here 3,1I  

means the first associated ideal of 3I . 

3,0

2,0

1,0

0,0

.

.

.

I

I

I

I

















  









  
3,1

2,1

1,1

0,1

.

.

.

I

I

I

I

















 









3,2

2,2

1,2

0,2

.

.

.

I

I

I

I

























3,3

2,3

1,3

0,3

.

.

.

I

I

I

I

















 









   

...

...

...

...

                                                             

  
We can deduce a finite number of ascending chain of ideals of R  
thus: 
 

…(2) 
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3. The Hilbert Basis Theorem can be extended to the 

polynomial ring 1 2[ , ,..., ]nk x x x  of finitely many 
indeterminates over a field k. 

 
4. If we replace [ ]R x  or 1[ ,..., ]nk x x , by 1 2[ , ,...]R x x , 

the polynomial ring of infinitely many indeterminates, the 
theorem fails to hold since R is Noetherian. 
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