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INTRODUCTION  
Infectious diseases pose a great challenge to both humans and 
animals world-wide. Control and prevention are therefore  
important tasks both from a humane and economic point of views. 
Efficient intervention hinges on complete understanding of disease 
transmission and persistence (Finkenstadt et al., 2002). Dynamic 
modeling of diseases has contributed greatly to this (Anderson & 
May, 1991). In this work we focus on measles, a childhood 
disease. 
 
Measles is a viral respiratory infection that attacks the immune 
system and is so contagious that any person not immunized will 
suffer from the disease when exposed. Measles virus causes rash, 
cough, running nose, eye irritation and fever. It can lead to ear 
infection, pneumonia, seizures, brain damage and death (WHO, 
2005). Children under five years are most at risk. Measles infects 
about 30 to 40 million children each year and causing a mortality of 
over 500,000, often from complications related to pneumonia, 
diarrhea and malnutrition (WHO/UNICEF, 2001). Survivors are left 
with life-long disabilities that include blindness, deafness or brain 
damage.  
 
Available records revealed that in 2003 alone, 530, 000 deaths 
were recorded in the world as a result of measles (WER, 2005). 
Despite the availability of measles vaccine for more than 40 years, 
many regions of the world are still being plagued by the disease. In 
1989, the World Health Assembly set specific goals for the 
reduction in measles morbidity and mortality (WHO, 1990), 
resulting in the WHO/UNICEF measles mortality reduction and 
regional elimination strategic plan (WHO, 2005). Majority of 
measles deaths occur in 14 countries where immunization 
coverage for children was reported to be less than 50 %.  
 
In 2005, measles killed more than 500 children in Nigeria. Of the 
23,575 cases recorded in 2005, more than 90% were in Northern 
Nigeria, where people are wary of vaccinations largely for religious  

 
reasons (WHO, 2005). Because measles is both an epidemic and 
endemic disease, it is difficult to accurately estimate its incidence 
on the global level, particularly in the absence of reliable 
surveillance systems. Although many counties reported the number 
of incident cases directly to WHO, the heterogeneity of these 
systems with differential underreporting does not permit an 
accurate assessment of the global measles incidence. In view of 
these difficulties, models have been used to estimate the burden of 
measles.  
 
Stochastic (probabilistic) reformulation of the theoretical model for 
recurrent measles epidemics originally put forward by Soper (1929) 
emphasized two important features of the stochastic model. One 
was that in large communities the theoretical tendency of the 
successive epidemics to damp down could be offset by random 
variability, and thus gives some possibility of representing actual 
statistics of measles incidence. The second was the tendency in 
small communities for the infection to die out when the number of 
susceptibles had dropped below its threshold value (Bartlett, 1960). 
Stochastic event-driven model best captures the robust nature of 
the critical community size and the associated pattern of fade-outs 
in childhood diseases. However, persistence of real world system 
is an emergent phenomenon and arises from the interaction 
between dynamics and stochasticity. Such phenomenon cannot be 
built into a model a prior and can only be determined by repeated 
simulation (Keeling & Grenfell, 2002). 
 
This paper reports the result of a study on the spread of measles 
infection within the Nigeria population as a function of time. We  
intend to answer the question ”under what condition does a small 
amount of initial infection invade an almost entirely susceptible 
population? And how does stochasticity in the fate of susceptible 
and infected individuals translates into uncertainty in epidemic 
projections and how can the uncertainty be characterised?  
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 DESCRIPTION OF THE MODEL  
The mathematical modeling of many real-life phenomena by means 
of random noisy perturbation are not possible by ordinary 
differential equations (ODEs), and hence are often modeled by 
using stochastic differential equations (SDEs) in order for the 
model to be realistic. In this section we model the dynamics of 
measles epidemic using coupled autonomous Ito SDE of the form: 
 

0 1 0 0 0( ) ( ( )) ( ( )) ( ),             ( ) ,     [   ],dX t g X t dt g X t dW t X t X t t T    …(1) 
 
where g0  and g1  are real-valued functions and W (t)  is one 
dimensional standard Wiener process and the solution X(t)  is Ito 
process. We consider an epidemic model of type SEIR where the 
process of disease spread is such that the population can be 
divided into four distinct classes. Let S (t) be the number of 
uninfected, susceptible individuals at time t. The distinction is made 
between those infected individuals which do not immediately 
participate in infection called latently infected individuals and 
denoted by E(t) and actively infected individuals which are involved 
in transmission of the disease and which are denoted by I (t). 
Finally, we let R(t) denotes the number of individuals who have 
been infected and then removed from the possibility of being 
infected again or of spreading infection. Removal is carried out 
either through isolation from the rest of the population or through 
immunization against infection or through recovery from the 
disease with full immunity against re-infection or through death 
caused by the disease. We assume that the probability of an 
individual to undergo the infection process is proportional to the 
time interval, (t, t + δt), if the interval, δt, is sufficiently small. The 
probabilities of two or more transition to take place are zero during 
the time interval (t, t + δt), so that at most one transition occurs 
during this period. We assume that individuals in the susceptible 
class have the same probability of contacting the infected 
individuals and therefore, have the same probability of transiting to 
the exposed class.  
 
 
 

 
Similarly, the individuals in the exposed and infected class have 
the same probability of being converted to the infected and 
removed classes respectively. 
 

Variables and parameters 
t   Time in years since initial infection 
S  Individuals who are not infected but at the risk of infection 
E  Latently infected individuals who are not participating in infection 
I  Actively infected individuals who are involved in spreading the 
disease 
R Individuals who have been removed by recovery, death or 
quarantine 
µ    Birth rate and death rates 
β(t)  Infection rate at time t. 
γ    Removal rate of infected individuals 
ν    Rate at which latent individuals move to infected class 
    Proportion vaccinated  
N   Total population size. 
 
In the following, upper case letters will be used to signify random 
variables and random processes. Then in (t, t + δt), let the change 
in the susceptible individuals be δS. Then if δt is small enough 
there are, in a simplified approach, two possibilities that δS is −1, 
with probabilitySt , or ( (1 ) ( ) )S N t SI t        with 
probability 1 − β S I δt. Here β(t) is representing the probability per 
unit time per infected individual of a successful infection of a 
susceptible individual at time t. Similarly, one can evaluate the 
random changes δE, δI and δR in the latently, actively infected 
individuals and removed individuals respectively. Although the 
numbers of individuals are whole numbers, one may make 
continuous approximations for the various components. In a 
stochastic model, this can be done by determining the first and 
second infinitesimal moments of the components to obtain 
diffusion. In this approximation the components satisfy the 
following stochastic differential equations which are similar to well 
known deterministic models but with additional noise terms: 

                                    

dS  ((1 )N  (t)SI  S)dt  G1dW  G2dW  G3dW
dE  ((t )SI  (   )E)dt G2dW G4dW G5dW
dI  (E  (   )I )dt  G5dW  G6dW  G7dW
dR  (N   I  R)dt  G7dW G8dW G9dW .










  

 
 Where 1 2 3 4 5 6 7(1 ) ;   ( ) ;   ;  ;    ;   ;   G N G t SI G S G E G E G I G I               8G N   

and 9G R . 
 
Here W is a standard Wiener process (i.e. mean 0, variance t at time t). Stochastic effects arise by virtue of the nature of interaction 
between susceptible and infected individuals. The parameter   can be interpreted as the reciprocal of the mean infectious period. We 
generally assumed the per capita birth and death rates are equal and we denote by  . The transmission rate is the product of the rate of 
contact among individuals and the probability that a susceptible individual who is contacted by an infectious individual will become infected. 
But the contact is not constant throughout the year. To see that, consider the fact that in the absence of vaccination, the average age at 
which a person is infected with measles is about 5 years (Earn, 2004), hence most susceptible are children. Children are in closer contact 
when school is in session, so the transmission rate varies seasonally. A crude approximation of this seasonality is to assume that   varies 
sinusoidally,   
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                                                                                      (t)  0 (1 1cos2 t).   
 

Here, 0  is the mean transmission rate, 1  is the amplitude of the seasonal variation and the time t  is assumed to be measured in 
years. We incorporate the chance mechanism in the solutions by simulation as follows. Let Sn , En ,  In,  Rn approximate the 
corresponding continuous variables at time t  nt where n  0,1,2,... . Then, we put  
 

 (4)   

Sn1  Sn  ((1)N (t)SnIn Sn)dt  (1)NdWn  (t)SnIndWn  SndWn,

En1  En  ((t)SnIn  ()En)dt  (t)SnIndWn  EndWn  EndWn,

In1  In  (En  ( )In)dt  EndWn  IndWn   IndWn,

Rn1  Rn  (N  In Rn)dt  NdWn   IndWn  RndWn.














 

 
Equations (4) together provide a scheme for approximating solutions of the basic SEIR SDEs model.  
 
SIMULATIONS 
Many phenomena of interest in biology can be modeled by the use 
of diffusion processes satisfying a stochastic differential equation. 
In most cases exact solutions for such models are not available 
and it is advantageous to proceed via computer simulations. For 
instance, our SEIR SDEs cannot be solved to obtain formulae for 
the functions S(t), E(t),  I(t)  and R(t) . Yet the epidemic 
curves that we are trying to explain are essentially given by I (t) , 
so it is hard to proceed without it. We therefore solved the model 
numerically using MATLAB (The Math works Inc., 2005). The time 
period for solution was 1980 < t < 2007 where t  0 implies 
January, 1980. The equations were solved with the assumption 
that fifty percent of the population had been vaccinated to establish 
’low control’ pattern of epidemics. We used a total population of 
69,629,000 corresponding to Nigeria population in 1980 (US 
Census Bureau, 2004) and employed values for the parameters 
that are currently available. We took 

(0) 162106 (5 / 365)I    (the number of reported cases as 
a proportion of the length of the year) and S(0)  0.65N , then 
we obtain the epidemic curve plotted in figure 3. We incorporated 
births per unit time and natural mortality rate  (per capita) and 
since the time scale for substantial changes in birth rates 
(decades) is generally much longer than a measles epidemic (after 
few months), we assumed that the population size is constant.  
 
 
 
 
 
 

 
For measles, estimates that are independent of the case report 
data indicates that the mean infectious period   is 52 year-1 and 
the basic reproductive number 0R  is 18 (McLean, 1994) for Africa. 
Following Tobias & Roberts (1998), we estimated disease 
transmission coefficient as   2.005 104  year1  and 
1  0.11 .  The initial value of   follows from the assumption 
that net birth rate is equal to N . Since we assumed a constant 
population size over the lifetime of the epidemic, we estimated 
  0.039  from the information on population of Nigeria in 2002 
(US Census Bureau, 2004) (the first year for which we have data 
on net birth rate and total population size). We pecked 
  0.5 corresponding to the information available to us on 
measles vaccination in Nigeria (WHO/UNICEF, 2001). These  
 
parameter values produced a reasonable agreement between the 
occurrence of epidemics and the observed historical pattern 
(WHO/UNICEF, 2008). The only difference being that stochastic 
extinctions and re-emergence of epidemic can be clearly seen in 
the simulated model (Fig.1). This can be attributed to the fact that 
the time scale of the epidemics as structured in months gives room 
for clear manifestation of extinction and re-emergence scenarios. 
 
 
 

 
 
 

 
 
 
 
 
 

…         (3) 

…         (4)  

FIG. 1.  MONTE  CARLO SIMULATION OF MEASLES EPIDEMICS IN NIGERIA.  
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DISCUSSION 
We simulated an SEIR stochastic differential equation model using 
the Euler scheme involving normal pseudo random numbers. The 
choice of using a discrete-time model to investigate measles 
dynamics is motivated by the fact that the distributions of latent and 
infectious periods are closer to a constant than to an exponential 
distribution and from the discrete nature of data available. Our 
objective is to estimate the time course of the dynamics of measles 
epidemic in Nigeria. In constructing the model we have assumed 
an unchanging population size and structure, with a constant birth 
and death rates. Figure 1 shows the Monte Carlo realization of the 
sample paths for the infected population. A 100,000 Monte Carlo 
realisation of the process were computed for the period of 360 
months or 30 years. From the stochastic evolution of the epidemic, 
two patterns are noticeable: local extinctions and recurrence. 
However, there is the absence of clear pattern of measles 
oscillations. The results of model simulation point to the usefulness 
of stochastic modeling of the cases of measles generally and 
Nigeria in particular. We have seen that even in the face of low 
immunization coverage, the epidemic curve can be estimated in a 
meaningful way that can help public health workers. For instance, 
intensive immunization campaign within the population at risk to 
infection can avert the possibility of re-emergence of measles in 
2009. However, there is a possibility of stochastic ‘fade-outs” in 
2010. We also observed that the dynamics of measles in Nigeria is 
generally characterized by underestimation in some years.  
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