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ABSTRACT 
In this paper we prove the existence of control for input bounded 
uncertain dynamical system, modeled on Euclidean spaces of 
dimensions n and .m  We apply the Conjugate Gradient Method 
(C.G.M) in generating algorithms to compute control signals for the 
class of problem under consideration. 
 
Keywords:  Control, Uncertain Dynamical Systems, Conjugate Gradient 
Method. 
 
INTRODUCTION 
We consider system with input bounded uncertainties. Our model is 
defined on Euclidean spaces of dimension n  and m  
 
Problem Formulation and Basic Assumptions 
Let  nR  and mR  be real Euclidean spaces of dimension n  
and .m  Let ),( mn RRB and 

),( nm RRB  be spaces of bounded linear operators mapping 
nR  onto mR  and  mR  onto nR , respectively. 

 
Denote by .  norm of vectors and operators. 
 
Let ]),,0[(2

nRTL and ]),,0[(2
mRTL  be spaces of 

valuedR n   and valuedR m  square integrable function 
on ].,0[ T  We consider a linear system subject to bounded input 
disturbance defined by: 
 
 )()()()( 11 tvBtuBtAxtx                  
 ],0[,)0( 0 Ttxx   
 
where A  and 1B  are matrix operators such that  nnRA   and  

mmRB 1  respectively.  )(tx  is the state vector in nR , 
)(tu and )(tv  are the control vector and disturbance vector 

respectively such that: 
          

                     
)},0(,{:)( 11  mmuURUtu m              

                     
)},0(,{:)( 22  mmvVRVtv m

 
VU  for each  ],0[ Tt   a.e. 

 
We shall be interested in computing a stable control, which renders 
the system sufficiently stable in the presence of some 
disturbances.  
 
We associate the following cost functional with (1) which is defined 
by: 
 

Minimize  I ( dttPututQxtxux
T TT })()()()({),
0       

where nnRQ  , non-negative definite symmetric matrix. 
 
P  and  TP  are  mm  symmetric and positive definite 
matrices.  
 
In what now follows, we make the following assumptions 
 
Assumptions: 
C1:   The matrix function A (.), B (.), Q (.) and P (.)  are constant 
matrices 
 
C2:   We assume that the system (1) describes a zero-sum 
differential game, hence there exists a saddle point   
 
C3: Control vector )(tu  and disturbance vector )(tv  are 
minimiser and maximiser of (3) respectively. The vectors are 
generated by strategies such that: 
 

mn RR :(.)  
 

mn RR :(.)  
 
and if  )(tu  and )(tv  denote optimal strategy for minimiser and 
maximiser respectively then 
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)())(( tutx   
 

)())(( tvtx   
            
Where   nRTtx ],0[:)(   is a solution of (1) 
 
C4: The linear equation defined by: 
 

],0[),()( TttAxtx   

0)0( xx                              
 
where A  is assumed to be stable, generate a fundamental 
matrix )(tS  on nR .  Also 
 

(.)u  and  (.)v  are measurable functions such that;  

].,,0[(.)(.), mRTLvu   
 
Necessary Condition for Existence of Stable Control 
In addition to assumption C1 – C4, we assume that the system is 
controllable. Let the inner product of n-dimensional vectors x  and 
y  in ]),,0[( nRTL  be denoted by                                                                                               

1,  yx  and be defined by: 
 


T

dttytxyx
01 )()(,      

 
Similarly, define the inner product for control  mRu  such that 
we have  

22,1  uu    
 
The cost functional  ),( uxI  is therefore written as: 
 

21 )(),()(),(),(  tPututQxtxuxI   
 
Given the assumptions C4, we write (1)  as an integral equation of 
the form: 

drrvBruBrtSxtStx
t

)}()(){()()( 10 10     … (7) 

 
Using the assumption C2 we set: 
 

.0),()(   tutv                            
 
Equation 7 becomes 
 

 
t

drruHrtSxtStx
00 )(~)()()(    

 
where 
 

1)(~ BIH       … (10) 
 

Next we define a linear integral operator on  ]),,0[(2
nRTL  as 

follows: 
 


t

dssustKLu
0

)(),(      

 
where 
 

)]),,0(),),,0([ 22
nm RTLRTLBL  

 
and  
 

HstSstK ~)(),(                             
 

),( stK  is linear and continuous in the domain  
,0 Tst   hence it is bounded. 

 
Define 
 

nRtrxtstr  )(,)()( 0                
 
Now the cost functional is expressed as 
 

 PuuQLuQrLuruI ,,)(       
 
Let TL  be the adjoint operator of L  then, 
 

)],,0(),,,0([ 22
mnT RTLRTLBL    and 

 
],,0{,,, 2

mT RTLzwzLLwz    and  

],,0[2
mRTLw   holds. 

 
Equation (14) in an expanded form becomes: 
 

TLQrruI  2,)(  uPuuQLuLuQr T ,,,    
 
where      
 


T TT dttQrstLtQrL
0

)(),()(                  

 
TT dutstQLuL
0

)(),()(                   

and 
TststdstQKstKts

T T   0),,max(,),(),(),(
0

 …(18) 

 
Define anther operator by: 
 
    PQLLR T                                                          
 
Then (eqn 15) is expressed as: 
 

12 )(),(,2,)(  tQrtruQrLuRuuI T   … (20) 

2 



Science World Journal Vol 4 (No 1) 2009 
                                                                                   www.sciecnceworldjournal.org 

ISSN 1597-6343 
 

Abiola & Solarin (SWJ):1-6                     On Existence Of Control For A Class Of Uncertain Dynamical Systems 
 

… (21) 

… (22) 

… (23) 

… (24) 

… (25) 

… (26) 

R  is clearly self-adjoint and positive definite. 
 
Now from the relation   1mu   and   2mv    we   have the 
following relation: 
 

0)(2
1  tum  

0)(2
2  tvm                                      

                                   
Let 
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Clearly  
 

0)(,0)( 21  vu   hence, 
 

0)()( 21  vu             
 
By virtue of (8) 
 

                
























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

)()1(
.
.
.

)()1(

)(

2

2
1

tuM

tuM

u

m



        

  where 
 

)()()( 21 vuu     and  21 mmM   
 
Functional (20) is concave while functional ( 23) is convex.  Now 
according to Hausdorff (1972)    
 

)(uI  is minimized by u  provided there exist a non-negative  
m dimensional vector function: 

 
m

m Rt  ),.......()( 1    such that: 

 2)(,)(),(  uuIuJ       
 
satisfies the saddle point inequality defined by: 
 

).,(),(),(  uJuJuJ     
 
The expression (26) shows that ),( uJ  is maximized by 

.0   In what now follows, we write (20) as: 
 
    

.)(,)(),(),(2,),(  utQrtrutQrLuRuuJ T 
    … (27) 
 
Let ),()( uJhD  denote the Frechet derivatives of J at u   
 
then 





 h
u

htQrLhRuuJhD T ,),(2,2),()(     … (28) 

 
where 
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
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
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


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




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
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j
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u

uu
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0.....

)1(2

1

  

 
Setting   0),()( uJhD    for arbitrary h  then; 
 

   0
2
1)( 



 
u

tQrLRu T                                  … (29) 

 
Set   )()( tftQrLT   and from (16), (17) and (18)   
 

  ],0[,),()(),( TssPudusRu      …  (30) 

Using Haudorff (1972), we apply the generalized Kunh-Tucker 
condition to (27) to get the following relations: 
 

0)( t                                                                           …  (31) 

 0)()1((),( 2  tuMt                             …  (32) 

)()()1()()(),(
0

tftusPudus
T

  … (33) 

 
where 
 

)()( tftQrLT                                                             …  (34) 
 
From (31) and (32) we found that if  0)( t   then 

)1/()(  Mtu now chose: 
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)
1

,
1

( 21

 


mmm       

 
Then     mtu )(    and   mtv )(    also   if  ,0)( tx    
then, 
                                

mMtu 



)1(

)(


                                                  …  (35) 

 
Set 
 

)()()1()()( tuttPutw   
   
in (33)   let the relationship between  )(tu  and )(tw  be denoted 
by ))(( tw  then we can express (33) as  

     
T

tfdsswsttw
0

)())((),()(                 …  (36) 

 
The integral equation in (36) is of Hammerstein type.  We wish to 
apply a version of Shauder-Tychnov fixed point theorem stated 
below for subsequent development of this paper. 
 
Theorem (1): Let K be a closed and convex subset of a Banach 
space X. Let KKT :  be a compact mapping, then T  has 
a fixed point in .K  
 
We now prove the following theorem using theorem (1) 
 
Theorem (2): The integral equation defined by (33) has a solution 
in ],0[2 TL   provided  
 
(i)  ],0[)( 2 TLtf             
 
(ii)  The function   RTT  ),0(),0(:(.,.)   is continuous 
for all Tst 0  and square integrable. 
 
(iii)  The function RT  ),0(:  is such that ))(( tw  is 
continuous and bounded for all .0 Tt    
 
Proof:  Define an operator T̂  mapping ],0[2 TL  into 

],0[2 TL  by 
 

 
T

dsswsttwT
0

.))((),()](ˆ[                                 … (37) 

 
Then w  is a solution of (33) if it is a fixed point of (37).  Now, we 
first show that  ],,0[]ˆ[ 2 TLwT    .0 Tt   
 
To see this, consider 
 

dtdsswst
T T 2

0 0
))((),(  



   

  



 

T T
dtdsswst

0

2

0
))((),(  

dtdsswdsst
T TT

2

0

2
1

0

22
1

0

2 )((),(  















 





   

 
(By Holder’s inequality) 
 

=   dsdtstsw
T T

TL   
0 0

2

],0[ ),()((
2

 

 
Set 
 

2
2

0 0
),(   dsdtst

T T
 

 
Then 
 

dsdtstsw
T T

TL

2

0 0],0[
),())((

2     

 
=   ],0[2

22 ))(( TLsw  
      
This shows that  ],0[)](ˆ[ 2 TLtwT        .0 Tt     

Now 2]ˆ[ LwT  [0, T] implies wT̂  and this implies the 

existence of ,0ˆ M such that: 
 

 MMwT
TL

ˆ,ˆˆ
],0[2

 

 
Define K such that: 
 
K= }~ˆ],,0[{ 2 MwTTLw   

 
Clearly K is closed and convex. Let H be a subset of K such that 
 
H= }:ˆ{ KwwT   
 
We show that H is relatively compact, by showing that 
 
(i) H is uniformly bounded. 
(ii) H is equicontnuous   
 
H is uniformly bounded  
Let ],0[ T   then for  ,ˆ HwT   
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],0[

2
1

0

2

0
)(ˆsup))((),(ˆ

T

T T
MwTdtdsswstwT 








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



    

 
This implies that MwT ˆ  hence H is uniformly bounded. 

 
H is equicontnuous  
Since (.,.)  is continuous on a compact domain [0, T] then it is 
uniformly continuous. Therefore given  ],0[, 21 T  and  

 ,01  a 0  such that 
 

121 ),(),(   ss     whenever     21 . 
 
Now for  HwT ˆ  
 

))(ˆ())(ˆ( 21  wTwT   

=  
T

dsswss
0

21 ))(()),(),((   

 

dsswss
T

))((),(),(
0 21     

 

dssw
T

))((
0 1     

 
Whenever     21  
 
Since  ))(( sw  is bounded then there exist M1  >0 such that  

1))(( Msw   hence 
 

TMdsMdssw
TT

10 1110 1 ))((     

 
Whenever      21 . 
 

Now since  1  is arbitrary, given ,0  choose
TM1

1
  , 

then  
 

  ))(ˆ())(ˆ( 21 wTwT  

whenever 21   < . This implies that H is uniformly 
continuous hence equicontnuous. Therefore by Arzela Ascoli 
theorem, K is relatively compact. 
 
We now check the continuity of [ ]ˆwT . 
  

  



 

T T
dsswswstwTwT

0 0 21

2

21 ))(()(()(,(ˆˆ

                      

  















 





 

T TT
dsswswdsst

0

2

2
1

0

2
21

2
1

0

2 )(()((),(

Therefore 
                   
Choose  ))(())(( 21 swsw  , then  

 21
ˆˆ wTwT   whenever   21 ww   therefore T̂  is 

continuous and so by Shauder’s theorem T̂  has a fixed point. 
 
Remark (1): The existence of fixed point for integral equation (36) 
shows that we can construct a solution on iterative basis which will 
eventually converge to a fixed point of (36) This fixed point need 
not be unique however if ),( st  in (36) is strictly positive then 
(36) has a unique solution (Arika, 1976). Equation (36) is 
necessary for existence of stable control ).(tu  
 
Numerical Technique 
In this section we show that there exist computational techniques 
for computing stable control under uncertainty. We recall the 
conjugate gradient method of Hestenes & Stiefel (1952), which was 
initially developed for solution of the abstract algebraic equation of 
the form: 
 

Min  HHo AxxxaTxF  ,
2
1,)(  …  (37) 

Where H  is a Hilbert space and A is a positive definite operator. 
The technique admits the following simple steps. 
 
Step 1: Guess an initial point 0x and compute the gradient at 0x  

and denote the gradient by 0g  such that: 
 

Axag 0 / 0xx   
   
Step 2:  Set 00 gp                            
 
Step 3: Update the descent sequence as follows: 
                                    

...],.........2,1,0[,1  ipxx iiii                         
 





ii

ii
i App

gg

,

,
                                        

 
iiii Apgg 1       

                                         
iiii pgp   11  
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


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ii

ii
i gg

gg
,

1,1                                            

Step 4:  If   there exist a 0ig  for a particular  ,i  then 
terminate the procedure else set 1 ii   and go to step 3 
 
The conjugate gradient algorithm had been applied and found to 
work elegantly on a number of problems such as problem which 
involve the determination of minimum time paths for climb phase of 
a V/STOL aircraft (Bryson & Mehra, 1969). Worthy of mention is 
the achievement made in 1983, when the extended conjugate 
gradient method, was developed to handle problems in control 
theory (Ibiejugba, & Onumanyi (1984). Also the convergence 
estimate of the technique in the upper direction had been 
established in the work of Ibiejugba & Onumanyi (1984) and 
recently, the lower bound convergent estimate was attempted in 
Ibiejugba & Abiola (1985). In this work, a little investigation is made 
on the algorithm to allow it being applied to the class of problem 
defined in (1)-(3) 
 
Now recall equation (20) and define it by: 
   

 )(),()(),(2,)( tQrtrtutQrLuRuuI T

.        … (38) 
 
It is known that R is self-adjoint and positive definite, where  
 

PQLLR T                                                                  … (39) 
 
and 
 

 
TT dtusQLuL
0

)(),(                                          … (40) 

 

    dtstQKstKts
T T ),(),(),(
0   … (41) 

 
We can now observe that by explicit determination of the operator 

,QLLT  it is an easy matter to apply the gradient technique to the 
problem under investigation. Suppose )(ug  is the gradient 
of )(uI , we then state the technique in the form applicable to (38) 
 
The Algorithm: 
Step 1: Guess ,0u  arbitrarily and compute )(0 ug  at 0u  
 
Step2: Set )()( 00 ugup   
 
Step3: update descent sequence as  
 

)()(1 upuuu iiii   
 





)(),(

)(),(
)(

uRpup
ugugu

ii

ii
i  

    

)()()()(1 uRpuugug iiii   
 

iiii Rpuugup )()()( 11    
         

,......]2,1,0[;
)(),(

)(),(
)( 11 




  i
ugug

ugugu
ii

ii
i  

 
Remark (2): The convergence of the above algorithm can be 
established in a manner similar to the one described in Ibiejugba & 
Abiola (1985). 
 
We summarize the findings in this section by the following 
proposition. 
 
Proposition (1). The above algorithm generates a sequence 

}{ Nu  of controls which finally converges to a stable control  u  
for problem (1)-(3) given the assumption C1 – C4 holds and with 
the explicit determination of operator R in (39) which is defined as: 
 

PQLLR T                                                                   … (42) 
 
and 

 
TT dtutsQLuL
0

)(),(                                           …  (43) 


T T dtstQKstKts
0

),(),(),(                                 ... (44) 

 
Conclusion: We have proved the existence of control for a class of 
uncertain dynamical systems where the uncertainty enters into the 
system as input bounded uncertainty. In the subsequent paper we 
are going to apply the results in this paper into the determination of 
controls for water pollution problem. 
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