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ABSTRACT

Interest rates considerations in cash flows are fundamental
concepts in finance, real estate, insurance, accounting and
other areas of business administration. The assumption that
future rates are fixed and known with certainty at the
beginning of an investment, is a restrictive and theoretical
assumption that is not obtainable in real situations. A more
realistic approach would be, to report the expected future
value and its variance for a given return process. This paper
derives formulae for the mean and variance of future values
for a single cash flow and sequences of cash flows when
returns processes are randomly and independently
distributed. Numerical examples are given to illustrate the
magnitude of the change from the fixed rate of return process
to stochastic (random) rate of return processes.
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INTRODUCTION

Compounding of cash flows are fundamental concepts in financial
mathematics, real estate, insurance, actuarial science and
business administration (McCutcheon & Scott, 1989).

Most textbooks written in these areas include how to find the future
value of a current cash flow and the present value of a future flow.
An investor is basically interested in the future value of his
investment for T periods at an interest rate or rate of return of r per
annum (Bowers et al., 1986). The traditional compounding formula
as discussed by Galadima et al.

(2007) for unit finance is given as (1 + r)T

The assumption that future interest rates are known with certainty
at the time of investment is not practicable. The validity of this
restrictive assumption has raised criticism in the real world. The
argument is that, only zero coupon bonds are fully hedged and has
fixed and known-in-advance rates of return.

Most investments have future reinvestment rates that may vary
randomly with time. This suggests that we ought to consider the
problem in a broader context of randomly varying interest rates in
compounding cash flows when returns are randomly distributed
overtime. This paper develops the formulae for the future value of a
single cash flow as well as sequences of flows under the
assumption that, interest rates are identically and independently
distributed. Examples and applications are included to illustrate the
methods of compounding.

FUTURE VALUE OF A SINGLE CASH FLOW
Let It be the interest rate or rate of return for period t, (t =1, 2... T)

on a one period pure discount bond X, invested at time t = 0, wil
accumulate after T periods to

FV(X,)= X J@+1,)a+1,).a+1;,)]

IN(FV (X,) = In(X, J@+1,)a+1,).0+1;))
IN(FV (X,) =In(X,)+In(@+1,)+In@+1,)+...+@+1;)

Taking natural logarithm,

T

IN(FV (X,) =In(X,)+> InL+1,)

From which we obtain

.
FV(X,)=X, exp(z rt] (1)
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where I, = In(1+ It) is the continuously compounded returns for the period t. The textbook approach is a special case of equation (1)
and may be obtained by setting I, = r (a known constant) for all the periods. Generalising the compounding formula with future rates as

random variables, the actual value of I, at some future date t, can not be known as at the time of the initial investment. Now denote by

M(y,i) the moment generating function (Mgf) of the random variable y evaluated at the real number i. By definition (Giaccotto, 1989), M(y,i)
equals E(exp(iy)).

T
Let Y= lert’ andi=1
t=
itis clear that the expected future value of an investment X, is the mgf of the sum of the interest rates evaluated at the point +1:

E(FV(X,))= x{m(é“rﬂﬂn

The second moment of the expected future value FV (X ) is the mgf evaluated at +2:

T
E(Fv?(x2))= xg(m(zn,ﬁn Y
t=1
from which we obtain the variance of the future value of X 0 S,
T T 2
Var(FV(X,))= X2 MZrt,+2{M(Z rt,+1ﬂ 3)
t=1 t=1

Next, we assume that I is a normally distributed random variable with mean p and variance 02 and I is independent of I, for t #s. The
mgf for normally distributed random variables has a closed form solution given by:

m(y,i) = exp(i/,z+ iz(o-—;]]

T
where i is the mean of y and o' is its variance. The nomality of I, implies that the sum z r, isN(Tu,To?).

t=1
Thus the stochastic formula for compounding a single cash flow is given by
E(FV(X,))= Xoexp(Ty +T%2] @
and the corresponding variance around the mean is given by
Var(FV (X, ) = X 2{exp(2Tu +To? {exp(To?)-1] SN

We observe that the expected future value is positively related to both £ and o2 . Hence an investment is likely to be worth more, after T
periods as either the mean return or the variability of returns increases (Kotiah, 1991). The variance of the future value is a positive function
of ¢ and o2, but the coefficient of variation depends on o? only. Rewrite Equation (5) as

Var(FV (X, )= {E(FV (X, ))¥{exp(To? -1} @

Both Francis (1995) and Murray & Larry (1999) defined coefficient of variation (CV) as the standard deviation divided by the mean, that is,
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CV(FV(XO)): {exp(To-z)}% ()

We observe that if o 2is zero, Equation (4) corresponds to the formula found in textbooks for (continuous) compounding with fixed and

known reinvestment rates. In this case Equation (5) reduces to zero, implying that the future value of Xo is known for sure at the time of the
initial investment Galadima (2005).

The main difference between the traditional formula for the future value i.e. FV (X,) = X, exp(T ) and Equation (4) is the presence
2
o L .
of theterm T 7 in the exponent. This reveals that the net effect of going from fixed to random interest rates is to increase the effective

compounding rate by half the variance of the return process. Hence the variance around the mean may be used to measure the degree of
confidence about the possible future value of an investment.

FUTURE VALUE FOR A SEQUENCE OF CASH FLOWS

Consider a sequence of cash flows, X, X,,...X . Consistent with the traditional treatment, the flows are assumed to occur at the end
of each period. Now, define the vector of (T) real numbers

A, =0....0,1...1where there are t 0s and T-t 1s, also define the vector of random interest rates | = (11, ro... rr), and leta, = A
. The future value of X1, X2... X7 is given by

T
FV (X, Xy X7 )= D" X, exp(a,) ®)
t=1
Itis clear that the expected future value of Equation (8) is the sum of the mgf of each @, evaluated at the point +1:
T
E(FV (X, X0 X1 )= X M(a,,+1) ©)
t=1

and the second moment of Equation (8) is

E(FV2(X,, X500 X7)

y 2areey

iXtM(at,+2)+2§ iXiXJM(at+aj,+1) )

To compute these moments, we ot mean and vaince ofatss
E(a,)=(T —t)u .
var(a, )= (T - t)o* . @)

hence the formula for compounding a sequence of cash flows X1, X2... XT is given by

E(FV(Xl,Xz,...,XT)):ZXt exp{u(T —t)+%2(T —t)} (13)

For a sequence of constant payments at equal intervals, (i.e. an annuity) the future value factor of annuity (FVA) of the sequence obtained
using geometric summation reduces to,

E{FVA(X)} = X _exp{(u +622]T}_1— .

2
exp(u +c;]—1
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Equation (14) corresponds to the traditional textbook formula for future value of annuity

FVA(X )= x{

M} L)

exp(u)-1

Hence, the compounding rate is increased by"T2 ; therefore the traditional formula could be used with an effective interest rate of 1 + "72 :

To compute the variance of the future value, the variance of the sum a; + a;, using the fact that a + aj = 2a; + (g - &), we have

Var (ai+ a) = 4Var (a) + Var (a-a)) + 4cov (a, a; - a) (16)

The covariance between a; and a-a; is zero, that is;

4cov (ai,ara) =0

Var(ai +aj) AT =)o +(j-i)o? 17)
Therefore, Var(FV (X4, X5, X))
E[FVA(Xy, X X )= ETFV (X4, X, X )P L w

where

E[FV(X,, X, X1 )]

is given in (13) and

E[FV2(X,, X,..., XT)]zi‘,Xf exp[24(T —t)+ 252 ((T —1))]

+2Ti i XX, exp{u(ZT —j —i)+(%2](4T ~3j —i)}

i=1 j=i+l

To illustrate the formulae for compounding cash flows when rates
of returns are random variables, we have computed the mean and
standard deviation (given right below the corresponding mean) for
the future value of unit finance, both as a single cash flow and as
an annuity for T periods. The results are displayed in Tables | and
[Il. The values of 1 used are 12%, 16% and 20% respectively.

For each value of £z the moment have been computed four times;

i

once witho = 0, a second time withc = -, a third time with

o=4%

5> andlastly witho = .

These are displayed respectively below each 1 value (The u

values are written in bold type and the corresponding & values
are not in bold). Note that when the standard deviation is zero
(the first element in each cell) we have the standard case of
constant and known returns and the mean value given in any
standard mathematics of finance textbook. Foro > O, future
values are not known with certainty. The degree of uncertainty is
reflected by the non-zero standard deviation in Table 1 and Table
2.
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CONCLUSION

An area of application that could be handled with the present
approach of random rates of return includes contribution to a
pension fund, cooperative society's contributions or an Individual
Retirement Account (IRA). If the rates of return are assumed fixed
and known in advance, the future value of a sequence of
contributions to an IRA will be known with certainty. Choosing
between one fund and another in such a situation is trivial because
there is no risk; obviously investors will prefer the asset with the
highest possible return. Many advertisements by banks and
investment firms routinely report the future value of an IRA as if
such a value could be achieved with certainty under all investment
possibilities. A more realistic approach would be, to report the
expected future value and its variance for a given return process.
An individual could then choose an IRA portfolio that maximizes
the expected future value subject to a given level of risk. The
formulae developed above could be used to estimate both
moments for a given sequence of contributions and the return
process. A number of numerical examples are given to illustrate the
magnitude of the change from fixed to random returns.
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12%

16%

20%

0%

3%

6%

12%

0%

4%

8%

16%

0%

5%

10%

20%

1.127
0.00

1.128
0.03

1.130
0.07

1.136
0.14

1.174
0.00

1.174
0.05

1.177
0.09

1.189
0.19

1.221
0.00

1.223
0.06

1.228
0.12

1.246
0.25

1.271
0.00

1.272
0.05

1.276
011

1.290
0.22

1.377
0.00

1.379
0.08

1.386
0.16

1.413
0.32

1.492
0.00

1.496
011

1.507
0.21

1.553
0.45

1.433
0.00

1.435
0.07

1.441
0.15

1.465
0.31

1.616
0.00

1.620
011

1.632
0.23

1.679
0.47

1.822
0.00

1.829
0.16

1.850
0.32

1.935
0.69

1.616
0.00

1.619
0.10

1.628
0.20

1.663
0.41

1.896
0.00

1.903
0.15

1.921
0.31

1.996
0.66

2.226
0.00

2.237
0.22

2.270
0.46

2411
1.00

1.822
0.00

1.826
0.12

1.839
0.25

1.889
0.52

2.226
0.00

2.234
0.20

2.261
0.41

2.373
0.88

2.718
0.00

2.735
0.31

2.787
0.63

3.004
141

2.054
0.00

2.060
0.15

2.077
0.31

2.145
0.64

2.612
0.00

2.624
0.26

2.662
0.53

2.820
1.15

3.320
0.00

3.345
0.41

3.421
0.85

3.743
1.95

2.316
0.00

2.324
0.18

2.346
0.37

2.436
0.79

3.065
0.00

3.082
0.33

3.134
0.67

3.352
1.49

4.055
0.00

4.091
0.54

4.200
113

4.665
2.65

2.612
0.00

2.621
0.22

2.650
0.45

2.767
0.97

3.597
0.00

3.620
0.41

3.690
0.85

3.984
1.90

4.953
0.00

5.003
0.71

5.155
1.49

5.812
3.57

2.945
0.00

2.957
0.27

2.993
0.54

3.142
1.17

4.221
0.00

4.251
0.51

4.344
1.06

4.736
241

6.050
0.00

6.118
0.92

6.328
1.94

7.243
4.77

3.320

10
0.00

3.335
0.32

3.380
0.65

3.568
1.40

4.953
0.00

4.993
0.63

5114
131

5.629
3.04

7.389
0.00

7.482
119

7.768
2.52

9.025
6.33

M = mean value of the return process
0 = standard deviation of the return process
Each cell contains the expected future value FV and, right below, its standard deviation
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TABLE 2. FUTURE VALUE OF A UNIT ANNUITY FOR T PERIODS

ISSN 1597-6343

m 12% 16% 20%
> Ol ow 3% 6% 12% | 0% 4% 8% 16% | 0% 5%  10%  20%
, | 100 100 100 100|100 100 100 100 [ 100 100 100 100
00 00 00 00|00 00 00 00| 00 00 00 00
, | 213 213 213 214 [ 217 217 218 219 | 222 222 223 225
00 00 01 02|00 00 09 02|00 00 01 04
o | 340 340 341 34335 355 356 360 | 371 372 373 380
00 01 01 02|00 01 02 03] 00 02 03 07
, | 488 484 48 489 517 517 519 528 | 554 55 558 573
00 01 02 04|00 02 05 07|00 04 10 24
s | 645 645 647 655|706 708 712 728 | 776 778 78 814
00 02 04 05|00 03 09 13| 00 07 18 31
s | 827 828 831 844|020 031 0938 065 |10.48 1052 1064 1LI5
00 03 05 06| 00 04 12 36| 00 13 33 55
o [1032 1034 1039 1050|1180 1104 1204 1247 1380 1386 1406 14.89
00 04 08 13|00 06 18 51 | 00 23 50 81
g | 1264 1266 1274 1302|1497 1502 1517 1582 1785 1796 1826 1956
00 05 10 20|00 16 23 65| 00 40 65 146
o | 1525 1529 1538 1579|185 1864 1886 1081 | 2281 2296 2342 25.37
00 06 13 27 |00 14 44 91 | 00 51 117 210
1o | 1820 1824 1838 1893|2278 2280 2321 2454|2886 2008 2975 3261
00 07 16 32|00 29 66 104 | 00 85 198 284

p=mean value of the return process
o=standard deviation of the return process

Each cell contains the expected FV and, right below, its standard deviation.
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