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ABSTRACT 
Interest rates considerations in cash flows are fundamental 
concepts in finance, real estate, insurance, accounting and 
other areas of business administration. The assumption that 
future rates are fixed and known with certainty at the 
beginning of an investment, is a restrictive and theoretical 
assumption that is not obtainable in real situations. A more 
realistic approach would be, to report the expected future 
value and its variance for a given return process. This paper 
derives formulae for the mean and variance of future values 
for a single cash flow and sequences of cash flows when 
returns processes are randomly and independently 
distributed.  Numerical examples are given to illustrate the 
magnitude of the change from the fixed rate of return process 
to stochastic (random) rate of return processes.   
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INTRODUCTION  
Compounding of cash flows are fundamental concepts in financial 
mathematics, real estate, insurance, actuarial science and 
business administration (McCutcheon & Scott, 1989).  
 
 
 

 
 
Most textbooks written in these areas include how to find the future 
value of a current cash flow and the present value of a future flow.  
An investor is basically interested in the future value of his 
investment for T periods at an interest rate or rate of return of r per 
annum (Bowers et al., 1986). The traditional compounding formula 
as discussed by Galadima et al.                                                                                            
(2007) for unit finance is given as  Tr1 . 
 
The assumption that future interest rates are known with certainty 
at the time of investment is not practicable. The validity of this 
restrictive assumption has raised criticism in the real world. The 
argument is that, only zero coupon bonds are fully hedged and has 
fixed and known-in-advance rates of return. 
 
Most investments have future reinvestment rates that may vary 
randomly with time. This suggests that we ought to consider the 
problem in a broader context of randomly varying interest rates in 
compounding cash flows when returns are randomly distributed 
overtime. This paper develops the formulae for the future value of a 
single cash flow as well as sequences of flows under the 
assumption that, interest rates are identically and independently 
distributed. Examples and applications are included to illustrate the 
methods of compounding. 
 
FUTURE VALUE OF A SINGLE CASH FLOW 
Let It be the interest rate or rate of return for period t, (t = 1, 2… T) 
on a one period pure discount bond 0X  invested at time t = 0, will 
accumulate after T periods to 
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where )1ln( tt Ir    is the continuously compounded returns for the period t.  The textbook approach is a special case of equation (1) 

and may be obtained by setting tr = r (a known constant) for all the periods. Generalising the compounding formula with future rates as 

random variables, the actual value of tI  at some future date t, can not be known as at the time of the initial investment. Now denote by 
M(y,i) the moment generating function (Mgf) of the random variable y evaluated at the real number i.  By definition (Giaccotto, 1989), M(y,i) 
equals E(exp(iy)). 
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it is clear that the  expected future value of an investment 0X  is the mgf of the sum of the interest rates evaluated at the point +1: 
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The second moment of the expected future value )( 0XFV  is the mgf evaluated at +2:  
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 from which we obtain the variance of the future value of 0X  as;  
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Next, we assume that tr  is a normally distributed random variable with mean  and variance σ2 and tr  is independent of sr  for t ≠s. The 
mgf for normally distributed random variables has a closed form solution given by: 
 



















2
exp),(

2
2  iiiym

 

where  is the mean of y and 2   is its variance.  The normality of tr  implies that the sum

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Thus the stochastic formula for compounding a single cash flow is given by  
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and the corresponding variance around the mean is given by 
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We observe that the expected future value is positively related to both   and 2 .  Hence an investment is likely to be worth more, after T 
periods as either the mean return or the variability of returns increases (Kotiah, 1991).  The variance of the future value is a positive function 
of   and 2 , but the coefficient of variation depends on 2   only.  Rewrite Equation (5) as 
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Both Francis (1995) and Murray & Larry (1999) defined coefficient of variation (CV) as the standard deviation divided by the mean, that is,  
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1

2exp TXFVCV O   
We observe that if 2 is zero, Equation (4) corresponds to the formula found in textbooks for (continuous) compounding with fixed and 
known reinvestment rates.  In this case Equation (5) reduces to zero, implying that the future value of Xo is known for sure at the time of the 
initial investment Galadima (2005). 
 
 
The main difference between the traditional formula for the future value i.e. )exp()( 00 TXXFV   and Equation (4) is the presence 

of the term 
2

2T  in the exponent. This reveals that the net effect of going from fixed to random interest rates is to increase the effective 

compounding rate by half the variance of the return process.  Hence the variance around the mean may be used to measure the degree of 
confidence about the possible future value of an investment. 
 
FUTURE VALUE FOR A SEQUENCE OF CASH FLOWS 
Consider a sequence of cash flows, TXXX ,..., 21 .  Consistent with the traditional treatment, the flows are assumed to occur at the end 
of each period.  Now, define the vector of (T) real numbers  
 

1...1,0....0tA where there are t 0s and T–t 1s, also define the vector of random interest rates I = (r1, r2… rT), and let IAa tt     
.  The future value of X1, X2… XT   is given by 

   t

T

t
tT aXXXXFV exp,...,,

1
21 



  

It is clear that the expected future value of Equation (8) is the sum of the mgf of each ta   evaluated at the point +1: 

   1,,...,,(
1

21 


t

T

t
tT aMXXXXFVE

 
and the second moment of  Equation (8) is 
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To compute these moments, we obtain the mean and variance of at as  
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hence the formula for compounding a sequence of cash flows  X1, X2… XT  is given by 
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For a sequence of constant payments at equal intervals, (i.e. an annuity) the future value factor of annuity (FVA) of the sequence obtained 
using geometric summation reduces to, 
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Equation (14) corresponds to the traditional textbook formula for future value of annuity 
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Hence, the compounding rate is increased by 2

2 ; therefore the traditional formula could be used with an effective interest rate of 2
2  . 

 
To compute the variance of the future value, the variance of the sum ai + aj , using the fact that ai + aj = 2aj + (aj - ai), we have 
 
 

Var (ai + aj) = 4Var (ai) + Var (aj-ai) + 4cov (ai, aj - ai) 
                                   
 
The covariance between ai and ai-aj is zero, that is;  

4cov (ai,aj-ai) = 0 
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To illustrate the formulae for compounding cash flows when rates 
of returns are random variables, we have computed the mean and 
standard deviation (given right below the corresponding mean) for 
the future value of unit finance, both as a single cash flow and as 
an annuity for T periods. The results are displayed in Tables I and 
II. The values of   used are 12%, 16% and 20% respectively.  
For each value of   the moment have been computed four times; 

once with 0 , a second time with 4
  , a third time with  

2
    and lastly with   .  

 
These are displayed respectively below each   value (The   
values are written in bold type and the corresponding   values 
are not in bold).   Note that when the standard deviation is zero 
(the first element in each cell) we have the standard case of 
constant and known returns and the mean value given in any 
standard mathematics of finance textbook.  For 0 , future 
values are not known with certainty. The degree of uncertainty is 
reflected by the non-zero standard deviation in Table 1 and Table 
2. 
 
 

CONCLUSION 
An area of application that could be handled with the present 
approach of random rates of return includes contribution to a 
pension fund, cooperative society’s contributions or an Individual 
Retirement Account (IRA). If the rates of return are assumed fixed 
and known in advance, the future value of a sequence of 
contributions to an IRA will be known with certainty. Choosing 
between one fund and another in such a situation is trivial because 
there is no risk; obviously investors will prefer the asset with the 
highest possible return. Many advertisements by banks and 
investment firms routinely report the future value of an IRA as if 
such a value could be achieved with certainty under all investment 
possibilities. A more realistic approach would be, to report the 
expected future value and its variance for a given return process. 
An individual could then choose an IRA portfolio that maximizes 
the expected future value subject to a given level of risk. The 
formulae developed above could be used to estimate both 
moments for a given sequence of contributions and the return 
process. A number of numerical examples are given to illustrate the 
magnitude of the change from fixed to random returns.                                                        
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TABLE 1. FUTURE VALUE OF A SINGLE PAYMENT IN T PERIODS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        

                      µ = mean value of the return process 
                                          σ = standard deviation of the return process                                                                                                                                              
                                          Each cell contains the expected future value FV and, right below, its standard deviation 
 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

µ 12% 16% 20% 
σ 

T 0% 3% 6% 12% 0% 4% 8% 16% 0% 5% 10% 20% 

1 1.127 
0.00 

1.128 
0.03 

1.130 
0.07 

1.136 
0.14 

1.174 
0.00 

1.174 
0.05 

1.177 
0.09 

1.189 
0.19 

1.221 
0.00 

1.223 
0.06 

1.228 
0.12 

1.246 
0.25 

1.271 1.272 1.276 1.290 1.377 1.379 1.386 1.413 1.492 1.496 1.507 1.553 2 
0.00 0.05 0.11 0.22 0.00 0.08 0.16 0.32 0.00 0.11 0.21 0.45 
1.433 1.435 1.441 1.465 1.616 1.620 1.632 1.679 1.822 1.829 1.850 1.935 3 
0.00 0.07 0.15 0.31 0.00 0.11 0.23 0.47 0.00 0.16 0.32 0.69 
1.616 1.619 1.628 1.663 1.896 1.903 1.921 1.996 2.226 2.237 2.270 2.411 4 
0.00 0.10 0.20 0.41 0.00 0.15 0.31 0.66 0.00 0.22 0.46 1.00 
1.822 1.826 1.839 1.889 2.226 2.234 2.261 2.373 2.718 2.735 2.787 3.004 5 
0.00 0.12 0.25 0.52 0.00 0.20 0.41 0.88 0.00 0.31 0.63 1.41 
2.054 2.060 2.077 2.145 2.612 2.624 2.662 2.820 3.320 3.345 3.421 3.743 6 
0.00 0.15 0.31 0.64 0.00 0.26 0.53 1.15 0.00 0.41 0.85 1.95 
2.316 2.324 2.346 2.436 3.065 3.082 3.134 3.352 4.055 4.091 4.200 4.665 7 
0.00 0.18 0.37 0.79 0.00 0.33 0.67 1.49 0.00 0.54 1.13 2.65 
2.612 2.621 2.650 2.767 3.597 3.620 3.690 3.984 4.953 5.003 5.155 5.812 8 
0.00 0.22 0.45 0.97 0.00 0.41 0.85 1.90 0.00 0.71 1.49 3.57 
2.945 2.957 2.993 3.142 4.221 4.251 4.344 4.736 6.050 6.118 6.328 7.243 9 
0.00 0.27 0.54 1.17 0.00 0.51 1.06 2.41 0.00 0.92 1.94 4.77 
3.320 3.335 3.380 3.568 4.953 4.993 5.114 5.629 7.389 7.482 7.768 9.025 10 
0.00 0.32 0.65 1.40 0.00 0.63 1.31 3.04 0.00 1.19 2.52 6.33 
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TABLE 2. FUTURE VALUE OF A UNIT ANNUITY FOR T PERIODS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                   µ=mean value of the return process       
                                                   σ=standard deviation of the return process     
                                                   Each cell contains the expected FV and, right below, its standard deviation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

µ 12% 16% 20% 
σ 

T 0% 3% 6% 12% 0% 4% 8% 16% 0% 5% 10% 20% 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1           
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

2.13 2.13 2.13 2.14 2.17 2.17 2.18 2.19 2.22 2.22 2.23 2.25 2 
0.0 0.0 0.1 0.2 0.0 0.0 0.9 0.2 0.0 0.0 0.1 0.4 

3.40 3.40 3.41 3.43 3.55 3.55 3.56 3.60 3.71 3.72 3.73 3.80 3 
0.0 0.1 0.1 0.2 0.0 0.1 0.2 0.3 0.0 0.2 0.3 0.7 

4.83 4.84 4.85 4.89 5.17 5.17 5.19 5.28 5.54 5.55 5.58 5.73 4 
0.0 0.1 0.2 0.4 0.0 0.2 0.5 0.7 0.0 0.4 1.0 2.4 

6.45 6.45 6.47 6.55 7.06 7.08 7.12 7.28 7.76 7.78 7.85 8.14 5 
0.0 0.2 0.4 0.5 0.0 0.3 0.9 1.3 0.0 0.7 1.8 3.1 

8.27 8.28 8.31 8.44 9.29 9.31 9.38 9.65 10.48 10.52 10.64 11.15 6 
0.0 0.3 0.5 0.6 0.0 0.4 1.2 3.6 0.0 1.3 3.3 5.5 

10.32 10.34 10.39 10.59 11.90 11.94 12.04 12.47 13.80 13.86 14.06 14.89 7 
0.0 0.4 0.8 1.3 0.0 0.6 1.8 5.1 0.0 2.3 5.0 8.1 

12.64 12.66 12.74 13.02 14.97 15.02 15.17 15.82 17.85 17.96 18.26 19.56 8 
0.0 0.5 1.0 2.0 0.0 1.6 2.3 6.5 0.0 4.0 6.5 14.6 

15.25 15.29 15.38 15.79 18.56 18.64 18.86 19.81 22.81 22.96 23.42 25.37 9 
0.0 0.6 1.3 2.7 0.0 1.4 4.4 9.1 0.0 5.1 11.7 21.0 

18.20 18.24 18.38 18.93 22.78 22.89 23.21 24.54 28.86 29.08 29.75 32.61 10 
0.0 0.7 1.6 3.2 0.0 2.9 6.6 10.4 0.0 8.5 19.8 28.4 
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