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ABSTRACT 
A non cooperative markov game with several unique 
characteristics was introduced. Some of these characteristics 
include: the existence of a single phase multi server queuing 
model and markovian transition matrix/matrices for each 
game, introduction of virtual situations (virtual reality) or 
dummies to improve the chances of winning or dominating the 
opponent, existence of payoff reduction factor as a result of 
introduction of the virtual realities/dummies etc. The game had 
two variants: variant 1 for games with customer/input based 
virtual reality strategies and variant 2 games without 
customer/input based virtual reality strategies. Based on some 
of these characteristics enumerated above, as well as other 
characteristics and assumptions, a mathematical model was 
formulated for studying the games. From the model, nash 
equilibria was proved to exist. The model could be effectively 
used in studying competitive queuing systems which involves 
crowd renting, crowd hiding and other virtual reality and 
dummy strategies.  
 
Keywords: Markov games; Queuing; Virtual reality strategies; 
nash equilibrium, MSC CLASSIFICATION: 91A43 
 
INTRODUCTION  
Game theory is the study of the ways in which strategic interactions 
among rational players produce outcomes with respect to the 
preferences (or utilities) of those players, none of which might have 
been intended by any of them. Since the mathematical theory of 
games was invented by John von Neumann and Oskar 
Morgenstern (von Neumann & Morgenstern, 1947), a lot of work 
has been done to expound and advance the theory of games. 
 
The work of Nash Jr (Nash 1950; Nash 1951) from 1950-1951 
contributed much to our understanding of the mathematical 
analysis of non-cooperative games for pioneering analysis of 
equilibria in the theory of non-cooperative games. The concept of 
markov/stochastic game and markov strategies were discussed by 
Shapley (1953), Fink (1964), Fudenberg & Tyrole (1991). In these 
games there exists a set of states of nature S, a matrix game for 
every state s is a member of S and a probabilistic transition  
 
 

function that associates with every state s is a member of S and 
every combination of actions, one for each agent, a probability 
distribution on future states s’ is a member of S. 
 
The markov game concept in this work is remarkably different from 
those expounded by the above writers. The markov concept in this 
particular model corresponds to the markovian queuing model 
(Asmussen, 2003; Hamdy, 2004; Haribaskaran, 2006). Here the 
states represent the number of customers in the server and there is 
no matrix game for each state, rather, there exists transition matrix 
for each player and a corresponding payoff matrix. Introduction of 
virtual reality strategies change the transition matrices and the 
payoff matrices effectively changing the effective payoffs for the 
players. 
 
A very peculiar characteristics of this model is the concept of virtual 
reality strategies or dummy strategies, and this work is an attempt 
to help formalize this concept in game theory. Hence, it is expected 
to bring a new dimension to game theory analysis with the 
expected introduction of numerous sophisticated mathematical 
models to expound the concept and apply them to our daily lives. 
 
GAME CHARATERISTICS AND ASSUMPTIONS 
 
The mathematical model was developed based on the following 
characteristics and assumptions: 

1. A non zero sum game. 
2. Each competitor (player) is perfectly aware of each 

other’s strategy. 
3. The game is a non-cooperative game. 
4. The game is a simultaneous play game with finite 

number of players. 
5. There is an (M/M/S):( FCFS/N/infinity) queuing model 

behind every game. 
6. A nash equilibrium point (NE) exists, but the equilibrium 

point is dynamic. 
7. There are two game variants: variant 1 for games with 

customer/input based virtual reality strategies and variant 
2 games without customer/input based virtual reality 
strategies. 

8. Each competitor aware of the markovian transition 
matrix/matrices underlying the game introduces dummies 
or virtual situations to improve his/her chances of winning 
or dominating the opponent. 

9. Introduction of virtual realities results to a 
virtual/transitional probability matrix. 
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10. For variant 1 and 2 games, Introducing virtual reality 
strategies or dummies reduces the payoff but increases 
chances of a competitor dominating the opponent or 
winning the game. 

11. For variant 1 games, the magnitude of payoff reduction is 
equal to the product of a factor z and the number of 
introduced virtual situations/dummies. 

12. Depending on the magnitude of the z factor, the Nash 
Equilibrium may shift. 

13. It is assumed that whatever virtual reality strategy 
adopted by a player does not affect the probable total 
payoff of his opponent. 

14. In variant 2 games, virtual reality strategies include use of 
mirrors, entertainments etc to induce waiting. 

15. Playing conditions may be perfectly the same for both 
parties. i.e. the transition matrix for the competitors are 
identical (equal) for the same strategy, or may be 
different which makes the game biased in favour of any 
of the competitors. 

16. The game could be a 2-person game or an n-person 
game, but our analysis is based on 2-person game. 

 
THE GAMES QUEUING MODEL 
The game’s queuing model corresponds to (M/M/S):                         
(FCFS/N/infinity) model (Hamdy, 2004). Hence, the server 
capacity, N, is finite. Since the queue is markovian/poisson, arrivals 
are state dependent (Feinberg et al., 2002; Asmussen, 2003; 
Hamdy, 2004; Haribaskaran, 2006) which means that it is 
dependent on the number of customers already in the facility. The 
markovian process could be reduced to a markovian chain with the 
homogenous markovian transition matrices shown in Figs 1 and 2. 
 
DEVELOPMENT OF THE GAME’S MATHEMATICAL MODEL 
The mathematical model as we had earlier noted, assumes that 
there is a markovian transition matrix corresponding to the game’s 
payoff matrix, and a single phase multi channel queuing model 
behind every game. The transition matrix for the competitors, X and 
Y, is represented by: Px for competitor X and Py for competitor Y. 
Typical transition matrices for two competitors, X and Y, are shown 
in Figs 1 and 2. 
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FIG. 1. TRANSITION MATRIX FOR COMPETITOR X, PX 
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FIG. 2. TRANSITION MATRIX FOR COMPETITOR Y, PY 
 
For the transition matrices (Figs 1 and 2), we assumed that the 
probability of moving from a higher state to a lower state is zero (0). 
The states represent the number of customers/units in the facility 
and N represents the server capacity. A unified transition matrix P 
for the game produced by combining Px and Py is shown in Fig. 3.  
 
    0                      1                      …   N 
 
    0        P1X,1X , P1Y,1Y    P1X,2X , P1Y,2Y  … P1X,NX,P1Y,NY                                 
             
    1        P2X,1X , P2Y,1Y    P2X,2X , P2Y,2Y  … P2X,NX,P2Y,NY   
     . .  .  . 
     .  .  .  . 
     . .  .  .                                                                                                                                                
    N       PNX,NX ,PNY,1Y   PNX,2X , PNY,2Y  … PNX,NX,PNY,NY 
 

FIG. 3. UNIFIED TRANSITION MATRIX, P 
 
Here PiXjX corresponds to the probabilities in the transition matrix 
for competitor X. PiYjY corresponds to the probabilities in the 
transition matrix for competitor Y. A typical payoff matrix P for the 
game is shown in Fig. 4. 
 

0                              1                             N 
 
     0          G1X,1X , G1Y,1Y  G1X,2X , G1Y,2Y  … G1X,NX ,G1Y,NY                                 
             
     1          G2X,1X , G2Y,1Y  G2X,2X , G2Y,2Y  … G2X,NX ,G2Y,NY                                                   
     .             .                                    .                            .  
     .             .                      .                            .       
     .             .                     .                            .      
     N          GNX,1X ,GNY,1Y GNX,2X , GNY,2Y  …GNX,NX,GNY,NY 
 

FIG. 4. PAYOFF MATRIX, G 
 
Here  
G1X,1X = the payoff when player X moves from state 0 to 0, G1Y,1Y = 
the payoff when player Y moves from state 0 to 0, G2X,1X = the 
payoff when player X moves from state 1 to 0, G2Y,1Y = payoff when 
player Y moves from state 1 to 0 e.t.c. The effective payoff matrix 
EG is given by: 
 
EG = P∙G                         … (1) 
 
The dot operator in equation 1 carries out the operation of 
multiplying each payoff by its associated probability of occurrence. 
The transition and payoff matrices above represent the natural 
state of the game. 
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For variant 1 games, if virtual situations/dummies, n, are 
introduced, the elements in the transition matrix changes yielding a 
virtual transition/probability matrix, PT. The dummies represent 
individuals pretending to be part of the queue in order to attract 
more customers to the server. 
 
If n strategy is introduced by each player, and the payoff reduction 
factor is z, then the transitional payoff matrix, GT, is given by: 
 

......(2)..............................  )( zsnGGT   
 
Here, the operator, –, subtracts the quantity (n-s) z from the 
affected elements in the matrix G. 
The operator, –, is such that: 
 

.......(4)..........  )(
.....(3)..........  )(

zsYnIYJYGIYJYGT
zsXnIXJXGIXJXGT



  

 
n i HERE   

 
Combining GTixjx and GTiyjy we obtain GT. The subscripts x and y 
denotes the quantities for player x and y respectively. 
 
n= the value of the strategy i.e. number of dummies/virtual 
situations introduced 
z= the payoff reduction factor; s= system state 
 
Payoff reduction affects only rows in Fig. 4 affected by virtual 
reality, and the rows become biased in favour of the 
player/competitor that introduced the virtual reality strategy. 
 
For variant 2 games, equation 2 is of the form: 
 
GT=G– R                                                                              … (5) 
 
Here R is the payoff reduction. 
 

.......(7)..........  
.....(6)..........  

YRIYJYGIYJYGT
XRIXJXGIXJXGT



  

 
Hence, equation 1 changes to:  
 
EG=PT∙GT                                                                           …  (8) 
 
For variant 1 and 2 games, if virtual reality strategies are 
introduced by the players, then the grand payoff matrix, GG, is 
shown in Fig. 5. 
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FIG. 5. GRAND PAYOFF MATRIX, GG 

Here 
GGiX,jX = the cumulative payoff for player X in the effective payoff 
matrix, EG, when X uses strategy i-1. GGiY,jY = the cumulative 
payoff for player Y in the effective payoff matrix, EG, when Y uses 
strategy j-1. 
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N= maximum value of strategies 
 
Theorem 1: Nash equilibrium exists in markov queue game with 
virtual reality strategies. 
 
Theorem 2: Dynamic Nash equilibrium exists in markov queue 
game with virtual reality strategies.  
 
PROOFS OF THEOREMS 
Proof of Theorem 1: 
From Nash’s theorem (Nash, 1950), an equilibrium point must exist 
for the payoff matrix GG in Fig. 5, since there are finite number of 
pure strategies, and from our assumption, finite number of players. 
 
Proof of Theorem 2: 
Let the value of z in equation 3 be a at time t0, hence: 
GTan = G – (n-s) a     
 
Here n is finite and can have values: 0, 1, 2, 3,...N.   
 
Thus, equation 8 changes to: EGan = PT∙ GTan   
 
The grand payoff matrix at z = a is GGa. From Nash’s theorem 
(Nash, 1950), an equilibrium point must exist for the payoff matrix 
GGa, since there are finite number of pure strategies and finite 
number of players. 
 
Hence, let ka be the equilibrium point at z =a. 
 
Let the value of z in equation 3 change to b at time t1 while n 
remains unchanged, hence: 
 
GTbn = G – (n-s) b   
 
Thus, equation 8 changes to: EGbn = PT∙ GTbn The grand payoff 
matrix at z = b is GGb. Let kb be the equilibrium point at z =b. 
 

bGGaGG   

Hence: 
 

bKaK   

 
Or    

bKaK    

Alternatively, 
 
Let the value of R in equation 5 be a at time t0, hence: 
GTan = G – a     

                                                            …(2) 

                                         …(3)  
 

                                        … (4) 

                                                … (6) 
 

                                                … (7) 

                                                     …(9) 

                                                …(10) 
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Thus, equation 8 changes to: EGan = PT∙ GTan   
 
The grand payoff matrix at R = a is GGa 
 
From Nash’s theorem (Nash, 1950), an equilibrium point must exist 
for the payoff matrix GGa, since there are finite number of pure 
strategies and finite number of players. 
 
Hence, let ka be the equilibrium point at R =a. 
 
Let the value of z in equation 3 change to b while n remains 
unchanged, hence: 
GTbn = G – b   
 
Thus, equation 8 changes to: EGbn = PT∙ GTbn  
 
The grand payoff matrix at R = b is GGb. Let kb be the equilibrium 
point at R =b. 
 

bGGaGG   

Hence: 
 

bKaK   

Or    
bKaK   

EVALUATION OF A TYPICAL 3 STRATEGY, 2-PERSONS 
GAME 
Typical transition matrices for two competitors are shown below: 
 

00.100.000.02
60.030.000.01
20.060.020.00

StateCurrent 

2          1        0                                       

StateNext                                            

XP
 

 

00.100.000.02

60.030.000.01

20.060.020.00

StateCurrent 

2          1        0                                      

StateNext                                             

YP
             

 
For the above transition matrices, we assumed that the probability 
of moving from a higher state to a lower state is zero (0). 
 
If the game is biased in favour of X, Px looks like this: 
 

    

00.100.000.02
70.030.000.01
20.060.020.00

StateCurrent 

2          1        0                                         

StateNext                                              

XPB
 

A unified transition matrix, P, of the game produced by combining 
Px and Py is shown below: 
 

      
00.1,00.100.0,00.000.0,00.02
60.0,60.040.0,40.000.0,00.01
20.0,20.060.0,60.020.0,20.00

210

0 P  

 
A typical payoff matrix G0 for the game is shown below: 
 

                            
0,00,00,0
3,30,00,0
6,63,30,0

0 G
 

 
The effective payoff matrix for the game, EG0, is given by: EG0 = 
G0 ∙ P0 
 

           
00.0,00.000.0,00.000.0,00.0
80.1,80.100.0,00.000.0,00.0
20.1,20.180.1,80.100.0,00.0

0 EG  

 
Possible total payoff for player X = 4.8 
Possible total payoff for player Y = 4.8 
 
The transition and payoff matrices above represent the natural 
state of the game. 
 
For the payoff matrix P0 above, if strategy 1 is used i.e. n=1 and z= 
0.25, we have:  
 

            
00.0,00.000.0,00.000.0,00.0
00.3,00.300.0,00.000.0,00.0
75.5,75.575.2,75.225.0,25.0

1


GT  

 

              
00.1,00.160.0,00.030.0,00.0
00.0,60.040.0,40.060.0,00.0
00.0,30.000.0,60.010.0,10.0

1 PT  

 
The effective payoff matrix, EG1, is given by: EG1 = GT1 ∙ PT1 
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00.0,00.000.0,00.000.0,00.0
80.1,80.100.0,00.000.0,00.0
73.1,73.165.1,65.103.0,03.0

1


EG  

 
Total payoff for player X = 5.15 
Total payoff for player Y = 5.15 
 
If strategy 2 is used i.e. n=2 and z= 0.25, we have: 
 

  
00.0,00.000.0,00.000.0,00.0
75.2,75.250.0,50.000.0,00.0
50.5,50.550.2,50.250.0,50.0

2 


GT  

 

       
00.1,00.100.0,00.000.0,00.0
00.1,00.100.0,00.000.0,00.0
30.0,30.070.0,70.000.0,00.0

2 PT  

EG2 = GT2 ∙ PT2 
 
The effective payoff matrix, EG2, is given by: 
 

          
00.0,00.000.0,00.000.0,00.0
75.2,75.200.0,00.000.0,00.0
65.1,65.175.1,75.100.0,00.0

2 EG  

 
Total payoff for player X = 6.15 
Total payoff for player Y = 6.15 
 
The grand payoff matrix, GG1 for z = 0.25 is given by: 
 

        
15.6,15.615.5,15.680.4,15.6
15.6,15.515.5,15.580.4,15.5
15.6,80.415.5,80.480.4,80.4

1 GG  

 
The Nash equilibrium point corresponds to strategy 2, 2. 
 
For the payoff matrix P0 above, if strategy 1 is used i.e. n=1 and z= 
0.5, we have: 

       
00.0,00.000.0,00.000.0,00.0
00.3,00.300.0,00.000.0,00.0
50.5,50.550.2,50.250.0,50.0

1


GT  

 

           
00.1,00.100.0,00.000.0,00.0
60.0,60.040.0,40.000.0,00.0
30.0,30.060.0,60.000.1,10.0

1 PT  

 
The effective payoff matrix, EG1, is given by: EG1 = GT1 ∙ PT1 
 

   
00.0,00.000.0,00.000.0,00.0
80.1,80.100.0,00.000.0,00.0
65.1,65.150.1,50.105.0,05.0

1


EG  

 
Total payoff for player X = 4.90 
Total payoff for player Y = 4.90 
 
If strategy 2 is used i.e. n=2 and z= 0.5, we have: 
 

  
00.0,00.000.0,00.000.0,00.0
50.2,50.250.0,50.000.0,00.0
00.5,00.500.2,00.200.1,00.1

2 


GT  

  
00.1,00.100.0,00.000.0,00.0
00.1,00.100.0,00.000.0,00.0
30.0,30.070.0,70.000.0,00.0

2 PT  

 
                      EG2 = GT2 ∙ PT2 
 
The effective payoff matrix, EG2, is given by: 
 

00.0,00.000.0,00.000.0,00.0
50.2,50.200.0,00.000.0,00.0
50.1,50.140.1,40.100.0,00.0

2 EG  

 
Total payoff for player X = 5.40 
Total payoff for player Y = 5.40 
 
The grand payoff matrix, GG1 for z = 0.5 is given by: 
 

40.5,40.590.4,40.580.4,40.5
40.5,90.490.4,90.480.4,90.4
40.5,80.490.4,80.480.4,80.4

1 GG  

 
A look at the payoff matrix, GG1, above shows that Nash 
equilibrium point corresponds to strategy 2, 2.  
 
If strategy 1 is used i.e. n=1 and z= 1, we have: 
 

00.0,00.000.0,00.000.0,00.0
00.3,00.300.0,00.000.0,00.0
00.5,00.500.2,00.200.1,00.1

1


GT  

 

00.1,00.100.0,00.000.0,00.0
60.0,60.040.0,40.000.0,00.0
30.0,30.060.0,60.000.1,10.0

1 PT  

 
The effective payoff matrix, EG1 is given by: EG1 = GT1 ∙ PT1 
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00.0,00.000.0,00.000.0,00.0
80.1,80.100.0,00.000.0,00.0
50.1,50.120.1,20.110.0,10.0

1


EG  

Total payoff for player X = 4.40 
Total payoff for player Y = 4.40 
 
 
If strategy 2 is used i.e. n=2 and z= 1, we have: 
 

   
00.1,00.100.0,00.000.0,00.0
00.1,00.100.0,00.000.0,00.0
30.0,30.070.0,70.000.0,00.0

2 PT  

 

   
00.0,00.000.0,00.000.0,00.0
00.2,00.200.2,00.200.0,00.0
00.5,00.500.2,00.200.2,00.2

2 


GT  

 
The effective payoff matrix EG2 , is given by: EG2 = GT2 ∙ PT2 
 

  
00.0,00.000.0,00.000.0,00.0
00.2,00.200.0,00.000.0,00.0
20.1,20.170.0,70.000.0,00.0

2 EG  

 
Total payoff for player X = 3.90 
Total payoff for player Y = 3.90 
     
The grand payoff matrix, GG2 for z = 1 is given by: 
 

   
90.3,90.340.4,90.380.4,90.3
90.3,40.440.4,40.480.4,40.4
90.3,80.440.4,80.480.4,80.4

2 GG  

 
The Nash equilibrium point corresponds to strategy 0, 0. 
 
CONCLUSION 
The mathematical model developed for the game in this work could 
be used to analyze games where queues and Markov processes 
are involved, and dummies are used as game strategies to 
increase payoffs and improve chances of winning or dominating 
the opponent. The virtual reality strategies in variant 1 and variant 
2 games could be combined in a single game to develop variant 3 
games. The mathematical foundation for modeling variant 3 games 
has been laid in this work. 
 
 
 
 
 
 
 
 
 
 
 

The model as already stated, could be effectively used in studying 
games which involves crowd renting, crowd hiding and other virtual 
reality strategies such as competitive human loading systems, 
political campaign and electioneering strategies in many countries, 
and in other systems yet to be identified. 
 
Further more the concept of virtualization/virtual reality, payoff 
reduction and Nash equilibrium point shift introduced in this work 
could be applied to business, economics, management, 
psychology and in other systems yet to be identified. The 
mathematical foundations for such systems would be the subject of 
a future publication. 
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