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ABSTRACT 
Computations of the Total Cross-Sections (TCS) of elastic electron-
Ytterbium scattering were carried out using the partial wave 
decomposition method with the Lenz-Jensen potential at various 
incident energies. Results were compared with data obtained using 
the Born approximation method,  Eikonal approximation method and 
the National Institute of Standard and Technology (NIST) Standard 
Reference Database (SRD) 64 of the U.S.A. There is good agreement 
between our results and the data from Eikonal approximation and 
NIST SRD 64. However, data from the Born approximation disagree 
with our results at lower incident energies. This disagreement is 
anticipated as the Born approximation is valid only at high electron 
incident energies. 
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INTRODUCTION 
Elastic scattering of electrons by neutral atoms is a means of 
studying the dynamics of several particle systems. Much of what 
we know today about the forces and interactions in atoms and 
nuclei has been learned from scattering experiments, in which 
atoms in a target are bombarded with beams of particles (Achaver, 
2003). Scattering studies are important because they reveal 
information about the nuclear forces as well as about the structure 
of the nuclei; provide information about the charge distribution in 
nuclei and within nucleons; provide data which can serve as input 
information for calculations of kinetic processes in gases where 
low energy collisions predominate; etc (Merzbacher, 1970).  
 
Elastic scattering of electrons by an atom takes place if the final 
state of the atom after the collision coincides with the initial one 
(Winitzki, 2004). Total and differential cross-sections for such a 
process can be calculated using various approximation methods. 
These include the Born, Eikonal, optical theorem, partial wave 
decomposition, etc. In this work, the total cross-sections of 
Ytterbium were computed using the partial wave decomposition 
method.  
 
MATERIALS AND METHODS 
We used the FORTRAN code program developed by Koonin & 
Meredith, 1989) which takes the relativistic differential cross-
section as a sum of squared modules of the real and imaginary 
scattering amplitudes. The amplitudes can be calculated through 
the phase shifts of spherical waves, which are obtained by 
integration of equations for radial wave functions. In these 
computations the analytical approximation for the atomic 
electrostatic potential given by Lenz and Jensen, called the Lenz-
Jensen potential, based on the Thomas-Fermi model, is used. 
 
Scattering Theory 
For particles of mass m and energy  

ܧ = ℏమమ

ଶ
> 0      … 1.0 

  
scattering from a central potential, V(r) is described by a wave 
function, ψ(r) that satisfies the Schrodinger Wave Equation (SWE) 
 
− ℏమ

ଶ
∇ଶ߰+ ܸ߰ =   2.0 …   ߰ܧ

 
with the boundary condition at large distance 
 
߰→∞ → ݁௭ + (ߠ)݂ 

ೖೝ


    … 3.0 

 
Equation (3) holds for a beam of electrons incident along z-axis, 
and the scattering angle, ߠ is the angle between r and ̂ݖ while ݂ is 
the complex scattering amplitude, which is the basic function we 
seek to determine. The differential cross-section is given by: 
 
ௗఙ
ௗΩ

=  ଶ    … 4.0|(ߠ)݂|
 
The total cross-section is  
 
ߪ = ∫݀Ω ୢσ

ୢΩ
= 2π∫ dθsinθ|f(θ)|ଶπ

   … 5.0 
  
݂ is a function of both ܧ and ߠ (Messiah, 1968).  
 
Partial Wave Decomposition  
The method of partial wave expansion is a special trick to simplify 
the calculation of the scattering amplitude, ݂ (Schiff, 1968). The 
standard partial wave decomposition of the scattering wave 
function ߰ is 
 
(ݎ)߰ = ∑ (2݈ + 1)݅݁ఙ ோ()

 ܲ(ܿߠݏ)∞
ୀ   …6.0 

  
When equation (6) is substituted into the SWE (2) the radial wave 
functions, ܴ are found to satisfy the radial differential equations:  
 
ቂ− ℏమ

ଶ
ௗమ

ௗమ
+ (ݎ)ܸ + (ାଵ)ℏమ

ଶమ
− (ݎ)ቃܴܧ = 0 … 7.0 

 
This is the same equation as that satisfied by a bound state wave 
function but the boundary conditions are different. In particular, ܴ 
vanishes at the origin, but it has the large-r asymptotic behaviour  
 
ܴ → −(ݎ݇)݆ߜݏܿ]ݎ݇  8.0 …  [(ݎ݇)݊ߜ݊݅ݏ
 
Where ݆ and ݊ are the regular and irregular spherical Bessel 
functions of order ݈.  
 
The scattering amplitude is related to the phase shifts ߜ by 
(Messiah, 1968): 
 
(ߠ)݂ = ଵ


∑ (2݈+ 1)݁ఋߜ݊݅ݏ ܲ(ܿߠݏ)∞
ୀ  … 9.0 
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From equations (5) and (9) the total cross-section is given by  
 
ߪ = ସగ

మ
∑ (2݈ + ∞ߜଶ݊݅ݏ(1
ୀ     … 10.0 

 
Although the sums in equations (9) and (10) extend over all ݈, they 
are in practice limited to only a finite number of partial waves. This 
is because for large ݈, the repulsive centrifugal potential in 
equation (7) is effective in keeping the particle outside the range of 
the potential and so the phase shift is very small (Koonin & 
Meredith, 1989).  
 
If the potential is negligible beyond a radius ݎ௫, an estimate of 
the highest partial wave that is important is had by setting the 
turning point at this radius: 
 
ೌೣ(ೌೣାଵ)ℏమ

ଶೌೣ
మ =  11.0 …     ܧ

  
 ⇒ ݈௫ ≈  ௫   … 12.0ݎ݇
  
This estimate is usually slightly low since the penetration of the 
centrifugal barrier leads to non-vanishing phase shifts in partial 
waves somewhat higher than this (Niksic, 2003).  
 
The Phase shifts  
To find the phase shift in a given partial wave, we must solve the 
radial equation (7). The equation is linear, so that the boundary 
condition at large ݎ can be satisfied simply by appropriately 
normalizing the solution. 
 
If we put ܴ(ݎ = 0) = 0 and take the value at the next lattice 
point, ܴ(ݎ = ℎ), to be any convenient small number we then use 
 
݂" ≈ భିଶబାషభ

మ
    … 13.0 

 
for ܴ"(ℎ), along with the known values ܴ(0), ܴ(ℎ), and ݇(ℎ) 
to find ܴ(2ℎ).  
 
Now we can integrate outward in ݎ to a radius ݎ(ଵ) >  ,௫. Hereݎ
ܸ vanishes and ܴ must be a linear combination of the free 
solutions, ݆݇ݎ(݇ݎ) and ݇݊ݎ(݇ݎ): 
 
ܴ

(ଵ) = ߜݏܿൣ(ଵ)ݎ݇ܣ ݆൫݇ݎ(ଵ)൯ −  ൯൧ … 14.0(ଵ)ݎ݊൫݇ߜ݊݅ݏ
 
Although the constant, ܣ above, depends on the value chosen for 
ݎ)ܴ = ℎ), it is largely irrelevant for our purposes; however, it 
must be kept small enough so that overflows  are  avoided (Koonin 
& Meredith, 1989). Now we continue integrating to a larger radius 
(ଶ)ݎ >  :(ଵ)ݎ
 
ܴ

(ଶ) = ߜݏܿൣ(ଶ)ݎ݇ܣ ݆൫݇ݎ(ଶ)൯ −  ൯൧ … 15.0(ଶ)ݎ݊൫݇ߜ݊݅ݏ
  
Equations 14.0 and 15.0 can then be solved for ߜ to obtain 
 
ߜ݊ܽݐ = ீ

(భ)ି
(మ)

ீ
(భ)ି

(మ); ܩ = (భ)ோ
(మ)

(మ)ோ
(భ)  … 16.0 

 
where ݆

(ଵ) = ݆(݇ݎ(ଵ) etc. Equation (16) determines ߜ only 
within a multiple of ߨ but this does not affect the physical 
observables [see equations (9) and (10)]. The correct multiple of 
 s at a given energy can be determined by comparing the number’ߨ
of nodes in ܴ and in the free solution, ݆݇ݎ which occur for 
ݎ <  ௫. The phase shift in each partial wave vanishes at highݎ
energies and approaches ܰߨ at zero energy, where ܰ is the 
number of bound states in the potential in the ݈’th partial wave 
(Gianturco, 1989).  

 
The Lenz-Jensen Potential  
One practical application of the theory discussed above is the 
calculation of the scattering of electrons from neutral atoms. In 
general this is a complicated multi-channel scattering problem 
since there can be reactions leading to final states in which the 
atom is excited. However, as the reaction probabilities are small in 
comparison to elastic scattering, for many purposes the problem 
can be modeled by the scattering of an electron from a central 
potential (Hochstadt, 1971). This potential represents the 
combined influence of the attraction of the central nuclear charge 
(Z) and the screening of this attraction by the Z atomic electrons. 
For a neutral target atom, the potential vanishes at large distances 
faster than ିݎଵ. A very accurate approximation to this potential 
can be had by solving for the self-consistent Hartree-Fock potential 
of the neutral atom. However, a much simpler estimate can be 
obtained using an approximation to the Thomas-Fermi model of 
the atom given by Lenz and Jensen. 
 
 ܸ = − మ


݁ି௫(1 + ݔ + ܾଶݔଶ + ܾଷݔଷ + ܾସݔସ);           …17.0 

  
with  
 
݁ଶ = 14.409; ܾଶ = 0.3344; ܾଷ = 0.0485; ܾସ = 2.647 ×
10ିଷ;      … 18.0 
  
and  
ݔ = 4.5397ܼ

భ
లݎ

భ
మ                                                               …  19.0 

 
This potential is singular at the origin. If the potential is regularized 
by taking it to be a constant within some small radius ݎ (say 
the radius of the atom’s 1s shell), then the calculated cross-section 
will be unaffected except at momentum transfers large enough so 
that ݎݍ ≫ 1.  
 
The incident particle is assumed to have the mass of the electron, 
and, as is appropriate for atomic systems, all lengths are 
measured in angstrom (Å) and all energies in electronvolt (eV). 
The potential is assumed to vanish beyond 2Å. Furthermore, the 
 ଵ singularity in the potential is cutoff inside the radius of the 1sିݎ
shell of the target atom. 
 
Procedure  
The first thing done was the successful installation of the 
FORTRAN codes in the computer. This requires familiarity with the 
computer’s operating system, the FORTRAN compiler, linker, 
editor, and the graphics package to be used in plotting. Data 
generated from the program were saved in files which were later 
imported into the graphics software Origin 5.0 for plotting. 
 
 Compilation 
To prepare the codes for compilation is a matter of simple but 
tedious editing. In general, the procedure of preparing the codes 
for compilation is as follows:  
 
(i) First, if the FORTRAN compiler does not support the INCLUDE 
statement, each of the Physics and utility programs must be edited 
to include the common block files. The include file names must be 
exactly the same in the program and in the directory. The compiler 
used for this work supports the INCLUDE statement, thus this step 
was not executed.  
 
(ii) If the compiler does not accept the ‘!‘ comment delimiter then 
we must compile, link and run the program STRIP to change all of 
the files (this includes utility codes, Physics codes, and common 
blocks, but not data files). The compiler used also accepts the ‘!‘ 
comment delimiter, hence this step was also not done.  
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(iii) The next step is to edit the subroutine SETUP in the file 
SETUP.FOR. You must edit in constant values for variables that 
control I/O. For example, you will need to know how many lines 
there are on your terminal (24 in this case), unit numbers for I/O to 
the screen (these are 5 and 6), unit numbers for output files, and 
your own preference for default output (screen, file or printer). 
 
(iv)This last step is optional, and involves the three other routines 
in SETUP.FOR that are also hardware dependent. These routines 
come with all the lines commented out, except SUBROUTINE, 
RETURN, and END. Subroutine CLEAR clears the screen by 
sending escape characters to the terminal. This routine simply 
keeps the screen from looking too clustered: it is not essential. The 
last two routines (GMODE and TMODE) switch the terminal 
between graphics and text mode and vice versa.  
 
With these changes completed, we can now compile the Physics 
program, UTIL.FOR, SETUP.FOR, and GRAPHIT.BLK; link them 
together; and execute.  
 
Execution  
The program runs interactively. It begins with a title page 
describing the physical problem to be investigated and the output 
that will be produced. Next, the menu is displayed, giving the 
choice of entering parameter values, examining parameter values, 
running the program, or terminating the program. When the 
calculation is finished, all values are zeroed (except default 
parameters), and the main menu is re-displayed, giving us the 
opportunity to redo the calculation with a new set of parameters or 
to end execution. 
 
RESULTS  
 Results were generated for several electron incident energies and 
the graphics software Origin 5.0 used to plot graphs. The results 
obtained were compared with data obtained from National Institute 
of Standards and Technology (NIST) Standard Reference 
Database 64 (Jablonski et al., 2003) and data generated using the 
Born and Eikonal approximation methods.  
 

TABLE 1. COMPUTED TOTAL CROSS-SECTIONS FOR 
ELECTRON-YTTERBIUM ELASTIC SCATTERING USING THE 

PARTIAL WAVE (PW), NIST SRD 64, BORN AND EIKONAL 
APPROXIMATION METHODS FOR VARIOUS INCIDENT 

ENERGIES. 
 

E(eV) Approximation Method 
PW NIST Born Eikonal 

10 18.730  539.500 5.398 
20 9.428  394.400 3.860 
40 5.497  262.900 4.900 
60 6.106 13.160 199.100 3.374 
80 5.728 11.340 160.900 3.387 
100 2.721 9.940 135.200 3.385 
200 1.950 6.521 75.850 2.979 
400 2.478 4.465 40.670 2.449 
600 2.344 3.644 27.830 2.288 
800 2.149 3.163 21.170 1.953 
1,000 1.980 2.831 17.080 1.783 
2,000  1.981 8.718 1.970 
4,000  1.368 4.492 2.326 
6,000  1.094 3.024 2.128 
8,000  0.663 2.369 2.102 
10,000  0.817 1.894 1.948 
20,000  0.279 0.995 1.846 

Note: The maximum energy for PW as provided by the code is       
1000 eV while the minimum energy for NIST SRD 64 is 60 eV. 

 
 

FIG 1: COMPARISONS OF THE ENERGY DEPENDENCE OF 
THE TOTAL CROSS-SECTIONS FOR THE PARTIAL WAVE 

METHOD WITH DATA OBTAINED FROM THE BORN, EIKONAL 
AND NIST SRD 64 FOR NEUTRAL YTTERBIUM ATOM (Z=70). 

 
DISCUSSION 
The total cross-sections computed using the partial wave 
decomposition method have inverse relationships with the electron 
incident energies as seen in Table 1 and Fig. 1. Total cross-
section data obtained using the partial wave method are in good 
agreement with data from National Institute of Standards and 
Technology (NIST) Standard Reference Database 64 (Jablonski et 
al., 2003). Data from Eikonal approximation method are in good 
agreement with present work but lower. 
  
However, data from the Born approximation method disagree 
widely with present work, Eikonal and NIST SRD 64 data at low 
incident energies as seen in Fig. 1. These disagreements were 
anticipated as the Born approximation method is valid only at high 
electron incident energies (Winitzki, 2004). However, there is good 
agreement between the Born and other approximation methods at 
high incident energies as expected. 
 
Quantitative agreements are seen in comparisons with other 
approximation methods at low and intermediate electron incident 
energies as seen in Fig 1.  
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