STATISTICAL OPTIMIZATION OF IODINE ADSORPTION FOR PENTACLETHRA MACROPHYLLA PODS ACTIVATED CARBON PRODUCTION
Abstract
Efficient production of activated carbon (AC) depends on variables such as feedstock properties, preparation conditions, and activating agents. This study aimed to identify optimal conditions for AC production from African Oil Bean (Pentaclethra macrophylla) Pods (PMps) using potassium hydroxide (KOH) and phosphoric acid (H3PO4) as activating agents. Through a systematic iodine adsorption characterization approach and leveraging Response Surface Methodology as a chemometric tool, the study fine-tuned chemical activation and carbonization parameters (temperature, time, and impregnation ratio) for producing PMACs. The adjustments directly impacted the iodine number (In) and yields (Cy) of the PMACs (PMAC-KOHop and PMAC-H3PO4op). The predicted In and Cy values closely aligned with the observed values – (PMAC-KOHop: 918.58 mg/g predicted vs. 916.56 mg/g observed; PMAC-H3PO4op: 593.44 mg/g predicted vs. 592.88 mg/g observed) and (PMAC-KOHop: 39.60% predicted vs. 39.15% observed; PMAC-H3PO4op: 51.30% predicted vs. 51.10% observed), demonstrating precision of the production process. Key structural properties,