THE FIXED POINT AS A PERIOD-1 RECURRENT IN TOPOLOGICAL DYNAMICAL SYSTEMS
Abstract
The behavior of the dynamical orbit of a system by describing it relies on the method used. The paper uses the logistic function to illustrate and describe the fixed point of the periodic–like recurrence as a periodic -1 recurrent. The study is based on Theorem 1: is a fixed (Stationary) recurrent point, iff for all and an operator a continuous map and any neighborhood then, , Theorem 2: a point is periodic -1 or fixed point if and form a fixed (Stationary) recurrent point and, Definition 7: a point is said to be recurrent if for any neighborhood of , there exists an integer such that through the application of the logistic function.
The application of the logistic function on the two theorems (Theorem 1 and Theorem 2) and Definition 7 explained that period-1 recurrent only exists when there is the existence of fixed point (periodic orbits) which depends solely on the initial point and the parameter of the logistic function..